
1

Belgium Testing Days

Q
ua

le
 1

/2
01

4

Risk and Benefit Based Testing
Hans Schaefer

To test or not to test?

How to measure quality?
Philip Young

Bartłomiej Prędki
Krzysztof Chytła

2 1/20141/2014

Content

EDITORSHIP Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl
Piotr Poznański
piotr.poznanski@quale.pl

Website:
www.quale.pl/en (ENG)
www.quale.pl (PL)

Facebook:
http://www.facebook.com/qualemagazine

3. To test or not to test
Bartłomiej Prędki

5. To test or not to test
Krzysztof Chytła

DIFFERENT POINT OF VIEW

TESTING
7. Risk and Benefit Based Testing
Hans Schaefer

30. How to measure quality
Philip Young

QUALITY

1/2014 31/20141/2014

o test or not to test, that is the ques-
tion. Let me welcome you, young

fellow. As I’m slightly older… I mean a bit
more experienced than you, I recently got
into existential reflections on our profes-
sion. Although it may look as cutting our
own throat, I began to wonder, whether
we really should do what we do... As you
probably know, on almost every software-
related training, trainer tries to explain
why the testing is necessary, important
and valuable, giving various examples of
software failures which proved to be fatal.
The problem is that the lack of testing in
a large part of those failures was not the
most important factor. A lot of those fail-
ures would have been avoided if project
managers had made their job in a proper
manner. Let me show you some examples
that prove I’m absolutely right.

Reason one. Why trainers do not refer to
some spectacular examples where the
project was a great success showing an
importance of tester’s work at the same
time? Because it sells poorly, not to men-
tion that testers break the software – so
how they can even be considered as the
co-creators of success? It’s bloody obvi-

ous – if something is f***ed up (hate the
censorship, by the way), it’s better to say
“lack of adequate testing” rather than “the
management was poor”. But if the project
ends up with a success, who‘s praised?
Managers (because they managed in an
exceptional way) and programmers (you
know, those genius coders). No one then
remembers testers – the free lunch is for
other guys. So basically, that’s the way
to paint testing black - testers are just
needed for someone to blame them for
poor results.

Reason two. Let’s have a look at wages of
programmers and testers. Can you show
me the organization, in which testers are
paid better than programmers? No? Why?
Because such organizations DO NOT EX-
IST. All this jive about how the testing is
„important” is one big hypocrisy. So if tes-
ters have to work for peanuts, it’s much
better to spend that money on a decent
training for developers – they will learn
how to properly write code and will not
have to endure the whining of those who
can’t event reach the middle class... Man-
agers will also be pleased - the budget
for testing (which by the way always have

DIFFERENT POINT OF VIEW

T

To test or not to test
That is the question

Bartłomiej Prędki

4 1/20141/2014

to be fought for and explained „why we
need this”) can also be spent on more ef-
ficient equipment – the faster it compiles,
the faster you are able to release. So we
have better developers and more efficient
hardware – why the hell we need the test-
ing then?

Reason third. Fact: testing everything is
impossible. So if we’re not able to test ev-
erything, then why even start it? It’s like
getting into the car and immediately know-
ing that you won’t reach the target. Or like
starting to watch a movie, knowing from
the beginning that you won’t see the last
scene. So – either we do something right till
the end, or we give ourselves (and devel-
opers) a break. No self-respecting Project
Manager will admit the customer that the
system has not been fully tested. So what
he does? He blurs the truth behind color-
ful graphs, showing; of course, only those
that leads to the blissful smile of satisfac-
tion on client’s face. Hold on, something
here just slipped away ... Oh, what - it’s
unethical? Ethics? In BUSINESS?

Reason four. People like low quality. Many
people derive satisfaction from the fact
that they have something that breaks
down quite often - because then they’ll
fix it by themselves showing how clever
they are. Other ones just need a little bit
of sympathy from the world due to the fact
that their fate had punished them with
such crap.
Reason fifth – the last but not least (there
won’t be more reasons here as I do not
know if anyone has tested the correctness
of displaying too longish text in this sec-
tion of the magazine). As the famous Ed-
ward Murphy said, „Anything that can go
wrong — will go wrong”.

And no testing will help then.

TO TEST OR NOT TO TEST?

Bartłomiej Prędki

I’ve started my professional experience in 2004 as a tester of mass-
market mobile applications. Within next years I gained an experience
in Testing and Quality Assurance areas, mostly focused on Telecom-
munications industry.

During my career I was involved in testing, managing testing proc-
esses, training, technical support, requirement analysis, recruitment,
technical documentation creation and review.
Besides my mobile and telecommunications experience, I was also
involved in financial and banking systems related projects. Currently
I possess the role of QA Team Lead.

I’m a holder of two ISTQB Advanced certificates: Technical Test Ana-
lyst and Test Manager

I live and work in Wroclaw, Poland.

AUTHOR

1/2014 51/20141/2014

DIFFERENT POINT OF VIEW

o test or not to test: what kind of
questions is that? I need to take
a deep breath, calm myself down,

hold my horses – yet! - and start the dis-
pute the proper way.

Greetings my jolly good fellow! It’s been a
while since we last talked or wrote to each
other thus I’m sincerely pleased that op-
portunity has posed itself with such a bold
and provocative question. Let me take up
the glove. Challenge accepted. Let’s test
our arguments to drop all doubts once
and for all. May the best man win!

Not to test? That’s preposterous! Do you
remember when a guy “asked for a 13 but
they drew a 31” [The Offspring – Pretty fly
for a white guy]? A single test would have
solved the case.

Primo, let’s settle on the concept of who’s
breaking what. Usually software comes
in broken for testing. If not those brave
girls and boys committed to bug search-
ing at the cost of their very own eyesight
we wouldn’t even know that soft in ques-
tion is – actuall was – broken. Testers are
the moral victors of every failed project.
It’s not about praise and blame (or even

blamestorming) but about highest qual-
ity available at a reasonable price. A sea-
soned test specialist will never fall prey to
false accusations thanks to the undaunted
quality metrics. Nota bene, without test-
ing there would be no relevant quality
metrics at all!

Secundo, step by for…, aww just a sec,
unfortunately I cannot share confidential
HR data with you. That’s a pity. However
let me give you a small hint: there’s no
need for company-wide salary revolution
but the art of building and developing a
dedicated tiger team. All it takes is a prof-
itable business case to back it up.

Remember that „Errāre hūmānum est”
[Seneca] which translated into Yoda Test-
ing Language would mean „coder to error
prone is” and yes - coders are humans,
even those well trained ones. I would go
one step further and call a TDD-trained
coder a tester! Following that track a tes-
ter whose main duty is automation be-
comes a coder.

Saving on testing? Man please, it is like
saving on soap while trying to remove
grease. Kindly, take a look at „cost of poor

To test or not to test
What kind of question is that?

Krzysztof Chytła

T

6 1/20141/2014

TO TEST OR NOT TO TEST?

quality” side of the equation. Would you
pay for Tetris or Pac Man that does not re-
cord high-scores?

Tertio, I agree. (Did I really write that?).
That’s true. One cannot test everything
just like it’s not possible to download the
whole Internet onto a floppy disk! Let
me give you an example. There are mil-
lions of computer gamers that just cannot
wait, and are willing to queue in order to
download 4.7GB of their favorite’s sequel
through digital distribution channel.

Quattro, there’s not accounting for taste.
It can be cured these days, you know? I’m
more than happy to see some market re-
search on “urging need for poor quality
software”.
Finally, against Murphy’s Law, let me para-
phrase one quote: “Bugs! Brace yourselves,
Testers are coming!” [R.R. Martin].

Actually there’s one more thing. Keep in
mind that testing is pride and joy. Or may-
be torment? I guess that’s a subject for
another discussion.

Krzysztof Chytla

Test manager, designer and automation specialist with we-
alth of experience in embedded systems domain. Participa-
ted in big international projects assuring the highest product
quality. Flesh and blood tester curiously analyzing rapidly
expanding world of new technologies.

Author of translations and publications. Wroclaw University
of Technology, Faculty of Electronics graduate. Trainer and
coach passionate about acquiring and sharing knowledge.

On a personal note big fan of fantasy, science fiction and
board games accopanied by a a glass of single malt whisky
- an editor’s best friend.

AUTHOR

The 15th Anniversary Conference «Software Quality Assurance Days» will hold on April
18-19, 2014 in Moscow, Russia.

We invite you to attend the 15th Anniversary International Conference of Software Qual-
ity Assurance – SQA Days.

Once again we have an anniversary. This means that there is opportunity to summarize
our results, to reward the best of the best and, of course, to listen to the best speakers.
In addition to high quality reports and informative dialogue this year will be a lot of sur-
prises, competitions, installations, and various novelties.

Come and see it yourself. We will be glad to see you!

SQA DAYS

1/2014 71/20141/2014

TESTING

Hans Schaefer

Risk and Benefit Based Testing
Strategies for prioritizing tests against deadlines

Testing is under pressure. Especially test execution has problems, be-
cause it is pressed by the collective delays and overruns of the project,
even in the short time frame of one sprint. Thus, not everything can
and should be tested. Testing should do two things: identify the worst
risks and identify important product benefits with low enough risk.
Identified risks can be mitigated. Defects may be corrected or pub-
lished in a known defect list. “Good” product areas are the known
benefits. They should show that there is hope for the product. If the
risks are too high, more test execution or a reduced feature set may
be the result. Just concentrating on testing the risky areas may give
an overly pessimistic picture of the product.

Risk-based testing is about prioritizing testing based on product risk.
Benefit-based testing is prioritizing areas with high benefits, but may-
be less risk.

Not everything is tested to the same depth. Risk contains the pos-
sible damage of something not working well enough, as well as the
probability that this could happen. Benefit is the necessity to have a
feature and the payback from using it. The article shows a method I
have been using for many years.

ABSTRACT

8 1/20141/2014

RISK AND BENEFIT BASED TESTING

Computing risk

To start with, the possible damage can be
found by considering the user’s point of
view about functions and characteristics of
the product. This can be done when writ-
ing user stories. It can be classified into
categories from „minimal” to „catastroph-
ic”. The probability of failing is, in the first
run, proportional to the usage frequency.
The last step is to estimate the importance
of functionality versus nonfunctional attri-
butes. This rough analysis may be used
for the first draft test strategy.

However, during the project, more infor-
mation becomes available. Damage is
possible even for project-internal users
(for example when components do not get
ready in time). Even the usage can be ana-
lyzed in more detail. It can be determined
how visible some fault may be to exter-
nal people. Then, for the sake of proba-
bility, much more information gets avail-
able. It should be more and more known
how the project is organized, which people
work with which components, where there
have been most changes, where the com-
plexity resides etc. Thus, the probability
of introducing faults into a product area
is not even. The last factor is fault detec-
tion through the already planned quality
assurance. In areas with thorough check-
ing most defects should be found. In other
areas they may survive. All such factors
can be considered, in more or less detail,
to determine what to test and what not, or
what to test more or less.

Computing benefits

Possible benefit can also be found by ask-
ing users and customers. It can be clas-
sified into categories from „minimal” to

„crucial”. A benefit is also proportional to
the usage frequency. Part of it should be
a rating of which components, capabili-
ties and features need to be delivered and
working first. As the non-occurrence of a
benefit can be classified as the damage
part of a risk, concentrating on benefits
actually means using risk-based testing
without the probability part.

If demonstration of working features is im-
portant, high benefit can be combined with
low probability for failures from a normal
risk calculation.

Integrating the method

The article shows how all this is integrated
into a spreadsheet calculation. The meth-
od has originally been derived from FMEA
(failure modes and effects analysis). The
result is normally a classification into three
priority classes.

The actual test to be run depends on the
available budget, time and how much has
been prepared before. In principle, every-
thing should be tested lightly (also called
“breadth test”), and risky and high benefit
areas should be tested more thoroughly
(also called “depth test”). A test method
hierarchy is shown.

Furthermore, two special applications are
shown:

How to prioritize a test when nothing 1.	
yet is known about the product. Here
we take into account that the distribu-
tion of faults is uneven. Where there
are faults- there are more. Thus, a first

1/2014 91/20141/2014

TESTING

test run is used to prioritize the next
one by testing more where faults have
been found.
What kinds of risks must be considered 2.	
in the test project, as opposed to the
product. It is utmost important to pre-
vent bad quality software from entering
testing, as this will increase the time
necessary to test. The answer here is
to define test entry and exit criteria,
and follow up of other quality assur-
ance done.

Disclaimer: The ideas in this paper are not
verified for use with safety critical soft-
ware. Some of the ideas may be useful in
that area, but due consideration is neces-
sary. The presented ideas mean that the
tester is taking risks, and the risks may or
may not materialize in the form of serious
failures.

Introduction

The scenario is as follows: You are the test
manager. You made a plan and a budget
for testing. Your plans were, as far as you
know, reasonable and well founded. When
the time to execute the tests approaches
the product is not ready, some of your tes-
ters are not available, or the budget is just
cut. You can argue against these cuts and
argue for more time or whatever, but that
doesn’t always help. You have to do what
you can with a smaller budget and time
frame. Resigning is no issue. You have to
test the product as well as possible and
you have to make it works reasonably well
after release. How to survive?

There are several approaches - using dif-
ferent techniques and attacking different
aspects of the testing process. All of them
aim at finding as many defects as possi-

ble, and as serious defects as possible, be-
fore product release. Different chapters of
this paper show the idea. At the end some
ideas are given that should help to prevent
the pressured scenario mentioned before.

In this paper we are talking about the
higher levels of testing: integration, sys-
tem and acceptance test. We assume that
developers have done some basic level of
testing of every program (unit testing).
We also assume the programs and their
designs have been reviewed in some way.
Still, most of the ideas in this paper are
applicable if nothing has been done before
you take over as the test manager. It is,
however, easier if you know some facts
from earlier quality control activities such
as design and code reviews and unit test-
ing.

1. The bad game

You are in a bad game with a high prob-
ability of loosing: You will lose the game
anyway - either by bad testing or by re-
quiring more time to test. After doing bad
testing you will be the scapegoat for lack
of quality. After reasonable testing you will
be the one guilty of late release. A good
scenario illustrating the trouble is the Y2K
project. Testing may have been done in the
last minute, and the deadline was fixed. In
most cases, trouble was found during de-
sign or testing and system owners were
glad that problems were found. In most
cases, nothing bad happened after Janu-
ary 1st, 2000. In many cases, managers
then decided there had been resources
wasted for testing.

But there are options. During this paper
I will use Y2K examples to illustrate the
major points.

10 1/20141/2014

How to get out of the game?

You need some creative solution, namely
you have to change the game. You need
to inform management about the impos-
sible task you have in such a way that they
understand. You need to present alterna-
tives. They need a product going out of
the door, but they also need to understand
the RISK.

One strategy is to find the right quality
level. Not all products need to be free of
defects. Not every function needs to work.
Sometimes, you have options to do a lot
about lowering special product qualities.
This means you can cut down testing in
less important areas. The typical way to
do this is cutting out less needed features.
This gives more time to implement the
necessary features with high quality.

Another strategy is priority: a test should
find the most important defects first. Most
important means often “in the most im-
portant functions”. These functions can be
found by analyzing how every one of them
supports the mission, and checking which
functions are critical and which are not.
You can also test more where you expect
more defects. Finding the worst areas in
the product soon and testing them exten-
sively will help you find more defects. If
you find too many serious problems, man-
agement will often be motivated to post-
pone the release or give you more time
and resources. The majority of this paper
will be about a combination of most im-
portant and worst areas’ priority.

A third strategy is making testing cheaper
in general. One major issue here is auto-
mation of test execution. But be cautious:
automation can be expensive, especially if

you have never done it before or if you
do it wrong! However, experienced com-
panies are able to automate test execution
with no overhead compared to manual
testing. Test automation is crucial in agile
projects.

A fourth strategy is getting someone else
to pay. Traditionally, this someone else is
the customer. You release a lousy prod-
uct and the customer finds the defects for
you. Many companies have applied this.
For the customer this game is horrible, as
he has no alternative. But it remains to
be discussed if this is a good strategy for
long term success. So this “someone else”
should be the developers, not the testers.
You may require the product to fulfill cer-
tain entry criteria before you test. Entry
criteria can include certain reviews hav-
ing been done, static analysis, a minimum
level of test coverage in unit testing, and
a certain level of reliability. The problem
is: you need to have high-level support in
order to be able to enforce this. Entry cri-
teria tend to be skipped if the project gets
under pressure and organizational matu-
rity is low.

The last strategy is prevention, but that
only pays off in the next project, when you,
as the test manager, are involved from the
project start on.

2. Understanding necessary qual-
ity levels

Software is embedded in a larger, more
complex business world. Quality must be
considered in that context [8].

The relentless pursuit of quality can dra-
matically improve the technical charac-
teristics of a software product. In some

RISK AND BENEFIT BASED TESTING

1/2014 111/20141/2014

applications - medical instruments, rail-
way signaling applications, air-navigation
systems, industrial automation, and many
defense-related systems - the need to pro-
vide a certain level of quality is beyond de-
bate. But is quality really the only or most
important framework for strategic decision
making in the commercial marketplace?

Quality thinking fails to address many of
the fundamental issues that most affect
a company’s long-term competitive and
financial performance. The real issue is
which quality attributes will produce the
best financial performance.

You have to be sure which qualities and
functions are important. Less defects do
not always mean more profit! You have
to research how quality and financial per-
formance interact. Examples of such ap-
proaches include the concept of Return on
Quality (ROQ) used in corporations such
as AT&T [9]. ROQ evaluates prospective
quality improvements against their ability
to also improve financial performance. Be

also aware of approaches like Value Based
Management. Avoid to fanatically pursue
quality for its own sake. Define which at-
tributes are crucial. James Whittaker’s ACC
method [18] may help here.

Thus, more test is not always needed to
ensure product success!

Example from the Y2K problem: It may be
acceptable that a product fails to work on
February 29, 2000. It may also be accept-
able that it sorts records wrong if they are
blended with 19xx and 20xx dates. But it
may be of immense importance that the
product could record and process orders
after January 1, 2000.

3. Priority in testing: Most impor-
tant and worst parts of the prod-
uct

Benefit means the importance of some-
thing in the product to the stakeholders.
This should be analyzed during working

Fig. 1. Benefit

IMPORTANT

TESTING

12 1/20141/2014

with specifications, long before any imple-
mentation activities are tried.

Risk is the product of damage and prob-
ability for damage to occur. The way to as-
sess risk is outlined in Figure 2 below. Risk
analysis assesses damage during use, us-
age frequency, and determines probabil-
ity of failure by looking at defect introduc-
tion.

Testing is always a sample. You can never
test everything and you can always find
more to test. Thus, you will always need
to make decisions about what to test and
what not to test, what to do more or less
of. The general goal is to find the worst
defects first, the ones that NEED TO BE
FIXED BEFORE RELEASE, and to find as
many such defects as possible.

This means the defects must be important.
The problem with most systematic test
methods, like white box testing, or black
box methods like equivalence partitioning,
boundary value analysis or cause-effect
graphing, is that they generate too many
test cases, some of which are less impor-

tant [17]. A way to lessen the test load
is finding the most important functional
areas and product properties. Finding as
many defects as possible can be improved
by testing more in bad areas of the prod-
uct. This means you need to know where
to expect more defects.

When dealing with all the factors we look
at, the result will always be a list of at-
tributes, components and capabilities with
associated importance. In order to make
the final analysis as easy as possible, we
express all the factors on a scale from 1
to 5. Five points are given for “most im-
portant” or “worst”, or generally for some-
thing having higher risk - which we want
to test more - while one point is given to
less important areas.

The details of the computation are given
later.

3.1. Determining importance or da-
mage: What is important?

You need to know the possible damage
resulting from an area to be tested. This

IMPORTANT

Fig. 2. Risk

RISK AND BENEFIT BASED TESTING

1/2014 131/20141/2014

means analyzing the most important areas
of the product. In this section, a way to
prioritize this is described. The ideas pre-
sented here are not the only valid ones. In
every product there may be other factors
playing a role, but the factors given here
have been valuable in several projects.

Important areas can either be functions
or functional groups, or attributes such as
performance, capacity, security etc. The
result of this analysis is a list of functions
and attributes or combination of both that
need attention. I am concentrating here on
sorting functions into more or less impor-
tant areas. The approach, however, is flex-
ible and can accommodate other items.

Major factors include:

Critical areas (importance to the user •	
or cost and consequences of failure)

You have to analyze the use of the soft-
ware within its overall environment. Find
how much the users and other stakehold-
ers value the area. Analyze the ways the
software may fail. Find the possible con-
sequences of such failure modes, or at
least the worst ones. Take into account
redundancy, backup facilities and possible
manual check of software output by us-
ers, operators or analysts. Software that is
directly coupled to a process it controls is
more critical than software whose output
is manually reviewed before use. If soft-
ware controls a process, this process itself
should be analyzed. The inertia and stabil-
ity of the process itself may make certain
failures less interesting.

Example: The subscriber information
system for a Telecom operator may un-
couple subscriber lines - for instance if
31-12-99 is used as «indefinite» value

for the subscription end date. This is a
critical failure. On the other hand, in a
report, the year number may be dis-
played as blanks if it is in 2000, which is
a minor nuisance.

Output that is immediately needed during
working hours is more critical than output
that could be sent hours or days later. On
the other hand, if large volumes of data to
be sent by mail are wrong, just the cost of
re-mailing may be horrible.

The damage may be classified into the
classes mentioned down below, or quan-
tified into money value, whatever seems
better. In systems with large variation of
damage it is better to use damage as ab-
solute money value, and not classify it into
groups.

A possible hierarchy for grouping damage
is the following:

A failure would be catastrophic (3)
	
The problem would cause the computer to
stop, maybe even lead to crashes in the
environment (stop the whole country or
business or product). Such failures may
deal with large financial losses or even
damage to human life. An example would
be the gross uncoupling of all subscrib-
ers to the telephone network on a special
date.

Failures leading to loosing the license, i.e.
authorities closing down the business, are
part of this class. Serious legal conse-
quences may also belong here.

The last kind of catastrophic failures is en-
dangering the life of people.

TESTING

14 1/20141/2014

A failure would be damaging (2)
	
The program may not stop, but data may
be lost or corrupted, or functionality may
be lost until the program or computer is
restarted. An example is equipment that
will not work just around midnight on the
31st of December.

A failure would be hindering (1)
	
The user is forced to workarounds, to more
difficult actions to reach the same results.

A failure would be annoying (0)
	
The problem does not affect functionality,
but rather make the product less appeal-
ing to the user or customer. However, the
customer can live with the problem.

A possible hierarchy for grouping impor-
tance is the following:

Crucial (3)
	
Without this area the product has no val-
ue.
Important (2)
	
Without this area the value of the product
is grossly reduced. The customer may just
as well choose another product.

Less important (1)
	
The user may do well without this area,
but would value its presence.

Minor (0)

The user may not even notice that this
area is not implemented.

A possible hierarchy for grouping damage is the following:

A failure would be catastrophic (3)•	
A failure would be damaging (2)•	
A failure would be hindering (1)•	
A failure would be annoying (0)•	

A possible hierarchy for grouping importance is the following:

Crucial (3)•	
Important (2)•	
Less important (1)•	
Minor (0)•	

A possible hierarchy for grouping frequency is the following:

Unavoidable (3)•	
Frequent (2)•	
Occasional (1)•	
Rare (0)•	

CLASSIFICATION

RISK AND BENEFIT BASED TESTING

1/2014 151/20141/2014

Visible areas and risk•	

The visible areas are areas where many
users will experience a failure if something
goes wrong. Users do not only include the
operators sitting at a terminal, but also fi-
nal users looking at reports, invoices, or
the like, or dependent on the service de-
livered by the product which includes the
software.

A factor to take into account under this
heading is also the forgivingness of the
users, i.e. their tolerance towards a prob-
lem. It relates to the importance of differ-
ent qualities - see above.

Software intended for untrained or naive
users, especially software intended for use
by the general public, needs careful atten-
tion to the user interface. Robustness will
also be a major concern. Software which
directly interacts with hardware, indus-
trial processes, networks etc. will be vul-
nerable to external effects like hardware
failure, noisy data, timing problems etc.
This kind of software needs thorough vali-
dation, verification and retesting in case of
environment changes.

An example for a visible area is the func-
tionality in a phone switch, which makes it
possible to make a call. Less visible areas
are all the value added services like call
transfer.

One factor in visibility is possible loss of
faith by customers, i.e. longer term dam-
age which would mean longer term loss
of business because customers may avoid
products from the company.

Usage frequency•	

Importance and damage are dependent on
how often a function or feature is used.

Some functions may be used every day,
other functions only a few times. Some
functions may be used by many, some by
few users. Give priority to the functions
used often and heavily. The number of
transactions per day may be an idea help-
ing in finding priorities.

A possibility to leave out some areas is
to cut out functionality that is going to be
used seldom, i.e. will only be used once
per quarter, half-year or year. Such func-
tionality may be tested after release, be-
fore its first use. A possible strategy for
Y2K testing was to test leap year function-
ality in January and February 2000, and
then again during December 2000 and in
2004.

Sometimes this analysis is not quite obvi-
ous. In process control systems, for exam-
ple, certain functionality may be invisible
from the outside. In object oriented sys-
tems, there may be a lot of utility libraries
used everywhere. It may then be helpful
to re-analyze the design of the complete
system.

A possible hierarchy is outlined here (from
reference [3]):

Unavoidable (3)
	
An area of the product that most users
will come in contact with during an aver-
age usage session (e.g. startups, printing,
saving).

TESTING

16 1/20141/2014

Frequent (2)
	
An area of the product that most users will
come in contact with eventually, but may-
be not during every usage session.

Occasional (1)
	
An area of the product that an average
user may never visit, but that deals with
functions a more serious or experienced
user will need occasionally.

Rare (0)
	
An area of the product which most users
never will visit, which is visited only if users
do very uncommon steps of action. Critical
failures, however, are still of interest.

An alternative method to use for picking
important requirements is described in
[1].

Importance can be classified by using a
scale from one to five. However, in some
cases this does not sufficiently map the
variation of the scale in reality. Then, it is
better to use real values, like the cost of
damage and the actual usage frequency.

3.2. Failure probability: What is (presu-
mably) worst

The worst areas are the ones having most
defects. The task is to predict where most
defects are located. This is done by ana-
lyzing probable defect generators. In this
section, some of the most important de-
fect generators and symptoms for defect
prone areas are presented. There exist
many more, and you have to always in-
clude local factors in addition to the ones
mentioned here.

Complex areas•	

Complexity is maybe the most important
defect generator. Many complexity mea-
sures exist, and research into the relation of
complexity and defect frequency has been
done for more than 30 years. However, no
predictive measures have until now been
generally validated. Still, most complexity
measures may indicate problematic areas.
Examples include long modules, many
variables in use, complex logic, complex
control structure, a large data flow, central
placement of functions, a deep inheritance
tree, and even subjective complexity as
understood by the designers. This means
you may do several complexity analyses,
based on different aspects of complexity
and find different areas of the product that
might have problems.

Changed areas•	

Change is an important defect genera-
tor [13]. One reason is that changes are
subjectively understood as easy, and thus
not analyzed thoroughly for their impact.
Another reason is that changes are done
under time pressure and analysis is not
completely done. The result is side-ef-
fects. Advocates for modern system de-
sign methods, like the Cleanroom process,
state that debugging during unit test is
more detrimental than good to quality, be-
cause the changes introduce more defects
than they repair.

In general, there should exist a protocol of
changes done. This is part of the configu-
ration management system (if something
like that exists). You may sort the changes
by functional area or otherwise and find
the areas which have had exceptionally
many changes. These may either have a
bad design from before, or have a bad de-

RISK AND BENEFIT BASED TESTING

1/2014 171/20141/2014

sign after the original design has been de-
stroyed by the numerous changes.

Many changes are also a symptom of badly
done analysis [5]. Thus, heavily changed
areas may not correspond to user expec-
tations.

Impact of new technology, solutions, •	
methods

Programmers using new tools, methods
and technology experience a learning
curve. In the beginning, they may gener-
ate many more faults than later. Tools in-
clude CASE tools, which may be new in the
company, or new in the market and more
or less unstable. Another issue is the pro-
gramming language, which may be new to
the programmers, or Graphical User Inter-
face libraries. Any new tool or technique
may give trouble. A good example is the
first project with a new type of user inter-
face. The general functionality may work
well, but the user interface subsystem
may be full of trouble.

Another factor to consider is the maturity
of methods and models. Maturity means
the strength of the theoretical basis or
the empirical evidence. If software uses
established methods, like finite state ma-
chines, grammars, relational data models,
and the problem to be solved may be ex-
pressed suitably by such models, the soft-
ware can be expected to be quite reliable.
On the other hand, if methods or models
of a new and unproven kind, or near the
state of the art are used, the software may
be more unreliable.

Most software cost models include factors
accommodating the experience of pro-
grammers with the methods, tools and
technology.

This is as important in test planning as it is
in cost estimation.

Impact of the number of people in-•	
volved

The idea here is the thousand monkeys
syndrome. The more people are involved
in a task, the larger is the overhead for
communication and the chance that things
go wrong. A small group of highly skilled
staff is much more productive than a large
group of average qualification. In the CO-
COMO [10] software cost model, this is the
largest factor after software size. Much of
its impact can be explained from effort go-
ing into detecting and fixing defects.

Areas where relatively many and less qual-
ified people have been employed, may be
pointed out for better testing.

Care should be taken in that analysis:
Some companies [11] employ their best
people in more complex areas, and less
qualified people in easy areas. Then, de-
fect density may not reflect the number of
people or their qualification. Another fac-
tor is use of reviews: If reviews are used,
the number of involved people increases,
but the quality also increases, minimizing
risk.

A typical case is the program developed by
lots of hired-in consultants without thor-
ough follow-up. They may work in very
different ways. During testing, it may be
found that everyone has used a different
date format, or a different time window.

Impact of when the work was done•	

It has been observed in open source proj-
ects that components checked-in on Fri-

TESTING

18 1/20141/2014

days have more bugs than other compo-
nents (personal communication). Thus, it
may be useful to know when some work
was done or finished.

Impact of turnover•	

If people quit the job, new people have
to learn the design constraints before they
are able to continue that job. As not ev-
erything may be documented, some con-
straints may be hidden from the new per-
son, and defects result. Overlap between
people may also be less than desirable. In
general, areas with turnover will experi-
ence more defects than areas where the
same group of people has done the whole
job.

Impact of time pressure•	

Time pressure leads to people taking
shortcuts. People concentrate on getting
the job done, and they often try to skip
quality control activities thinking optimis-
tically that everything will go fine. Only in
mature organizations this optimism seems
to be controlled.

Time pressure may also lead to overtime
work. It is well known, however, that peo-
ple loose concentration after prolonged
periods of work. Together with shortcuts
in applying reviews and inspections, this
may lead to extreme levels of defect den-
sity.

Data about time pressure during develop-
ment can best be found by studying time
lists, project meeting minutes, or by inter-
viewing management or programmers.

Areas which needed optimizing•	

The COCOMO cost model mentions short-
age of machine and network capacity and
memory as one of its cost drivers. The
problem is that optimization needs extra
design effort, or that it may be done by us-
ing less robust design methods. Extra de-
sign effort may take resources away from
defect removal activities, and less robust
design methods may generate more de-
fects.

Areas with many defects before•	

Defect repair leads to changes which lead
to new defects, and defect-prone areas
tend to persist. Experience exists that
defect-prone areas in a delivered system
can be traced back to defect-prone areas
in reviews and unit and subsystem test-
ing. Evidence in studies [5] and [7] shows
that modules that had faults in the past
are likely to have faults in the future. If
defect statistics from design and code re-
views, and unit and subsystem testing ex-
ist, then priorities can be chosen for later
test phases.

Geographical distribution•	

If people working together on a project
are not co-located, communication will be
more difficult. This is true even on a local
level. Here are some ideas which haven
proven to be valuable in assessing if ge-
ography may have a detrimental effect on
a project:

People having their offices in differ-•	
ent floors of the same building will
not communicate as much as people
on the same floor.

RISK AND BENEFIT BASED TESTING

1/2014 191/20141/2014

People sitting more than 25 me-•	
ters apart may not communicate
enough.
A common area in the workspace, •	
such as a common printer or coffee
machine improves communication.
People sitting in different buildings do •	
not communicate as much as people
in the same building.
People sitting in different labs com-•	
municate less than people in the
same lab.
As soon as there is more than about •	
two kilometers between office build-
ing, people will not meet anymore,
but use the phone, email, net meet-
ings or videoconferencing [19].
People from different countries may •	
have difficulties, both culturally and
with the language [19]. If people re-
side in different time zones, commu-
nication will be more difficult. Phone
and conference contact depends on
overlapping work time. These are
problems in distributed or in out-
sourced software development.

In principle, geographical distribution is
not dangerous. The danger arises if peo-
ple with a large distance have to commu-
nicate, for example, if they work with a
common part of the system. You have to
look for areas where the software struc-
ture implies the need for good communi-
cation between people, but where these
people have geography against them.

History of prior use•	

If software has been used before by many
users, an active user group can be helpful
in testing new versions. Beta testing may
be possible. For a completely new system,
a user group may need to be defined, and

prototyping may be applied. Typically,
completely new functional areas are most
defect-prone because even the require-
ments might be unknown or unclear.

Local factors•	

Examples include looking at: who did the
job, who does not communicate well with
someone else, who is new in the project,
which department has recently been re-
organized, which managers are in conflict
with each other, the involvement of pres-
tige and many more factors. Only fanta-
sy sets boundaries. The message is: You
have to look out for possible local factors
outside the factors having been discussed
here.

One general factor to be considered •	

This paper is about high level testing. De-
velopers test before this. It is reasonable
to take a look at how developers had re-
viewed and tested the software before and
what kind of problems they typically over-
look. Analyze the unit test quality. This
may lead to further tailoring of the test
case selection methods [17].

Looking at these factors will determine
the fault density of the areas to be tested.
However, using only this will normally over-
value some areas. Typically, larger com-
ponents will be tested too much. Thus, a
correction factor should be applied: func-
tional size of the area to be tested, i.e.
the total weight of this area will be “defect
proneness / functional volume”. This factor
can be found from Function Point Analysis
early or from counting code lines if that is
available.

TESTING

20 1/20141/2014

What to do if you do not know anything
about the project, if all the defect genera-
tors can’t be applied?

You have to run a test. A first breadth test
should find defect-prone areas; the next
(depth) test will then concentrate on them.
The first test should cover the whole sys-
tem, but be very shallow. It should only
cover typical business scenarios and a few
important failure situations, but cover all
of the system. You can then find where
there was most trouble, and give priority
to these areas in the next round of test-
ing. The next round will then do deep and
through testing of prioritized areas.

This two-phase approach can always be
applied, in addition to the planning and
prioritizing done before testing. Chapter 4
explains more of this.

3.3. How to calculate priority of test
areas

The general method is to assign weights
and to calculate a weighted sum for every

IMPORTANT

Fig. 3. Failure Probability

area of the system. Test more where the
result is the highest!

For every factor chosen, assign a relative
weight. You can do this in very elaborate
ways, but this will take a lot of time. Most
often, three weights are good enough. Val-
ues may be: 1, 3, and 10 (“1” for “factor
is not very important”, “3” for “factor with
normal influence”, “10” for “factor that has
very strong influence”).

For every factor chosen, you assign a num-
ber of points to every product requirement
(every function, functional area, or qual-
ity characteristic). The more important the
requirement is, or the more alarming a
defect generator seems to be for the area,
the more points. A scale from 1 to 3 or
5 is normally good enough. Assigning the
points is done intuitively.

The number of points for a factor is
then multiplied by its weight. This gives
a weighted number of points between 1
and 50. These weighted numbers are then
summed up for damage (impact) and for

RISK AND BENEFIT BASED TESTING

1/2014 211/20141/2014

probability of errors, and finally multiplied
(see remark below). Testing can then be
planned by assigning most test cases
to the areas with the highest number of
points.

An example for benefit calculation (func-
tional volume being equal for the different
areas) (Tab. 1.).

Table 1 suggests that function «invoicing»
is most important to test, «order registra-
tion» and performance of order registra-
tion are next. The factor which has been
chosen as the most important is visibility.

Tab. 1. Benefit calculation	

IMPORTANT

As many intuitive mappings from reality for points seem to involve a logarithmic scale,
where points follow about a multiplier of 10, the associated risk calculation should ADD
the calculated weighted sums for probability and damage. If most factors’ points inher-
ently follow a linear scale, the risk calculation should MULTIPLY the probability and
damage points. The user of this method should check how they use the method!

REMARK

Computation is easy, as it can be pro-
grammed using a spreadsheet. A spread-
sheet is on http://www.softwaretesting.
no/testing/benefitcalc.xls .

An example for risk calculation (functional
volume being equal for the different ar-
eas) can be found from (Tab. 2.).

The table above requires you to know
something about complexity of areas and
their change frequency. This is typically
only known later during a project. Table 2
suggests that function «invoicing» is most
important to test, then «order registra-

TESTING

22 1/20141/2014

Tab.2. Risk calculation

IMPORTANT

tion» and «performance of order registra-
tion». The factor which has been chosen
as the most important is «visibility».

Computation is easy, as it can be pro-
grammed using a spreadsheet. A more
detailed case study is published in [4]. A
spreadsheet is available on http://www.
softwaretesting.no/testing/riskcalc.xls

A word of caution: The assignment of
points is intuitive and may be wrong. Thus,
the number of points can only be a rough
guideline. It should be good enough to dis-
tinguish the high-risk areas from the me-
dium and low risk areas. That is its main
task. This also means you don’t need to
be more precise than needed for just this
purpose. If more precise test prioritization
is necessary, a more quantified approach
should be used wherever possible.

4. Making testing more effective

More effective test means to find more
and more important defects in the same
amount of time.

The strategy to achieve this is to learn
from experience and adapt testing.

First, the whole test should be broken into
four phases:

test preparation•	
pre-test•	
main test•	
after-test•	

Test preparation sets up areas to test, the
test cases, test programs, databases and
the whole test environment. Especially set-
ting up the test environment can give a lot
of trouble and delay. It is generally easy to
install the program itself and the correct
operating system and database system.
Problems often occur with the middleware,
i.e. the connection between software run-
ning on a client and software running on
different servers. Care should be taken to
thoroughly specify all aspects of the test
environment; and dry runs should be held
in order to ensure that the test can be
run when it is time to do it. Much can be
achieved using virtualization. Nevertheless
testing with modern platforms, especially

RISK AND BENEFIT BASED TESTING

1/2014 231/20141/2014

mobile, can make setup of test environ-
ments very difficult. Time should be re-
served in order to do and check this early
on.

In a Y2K project, care was taken to ensure
that licenses were in place for machine
dates after 1999, and that the licenses al-
lowed resetting of the machine date. An-
other area to focus was that included soft-
ware had been Y2K compliant.

The pre-test is run after the software un-
der test is installed in the test lab. This
test contains just a few test cases running
typical day to day usage scenarios. The
goal is to test if the software is ready for
testing at all, or totally unreliable or in-
completely installed. Another goal may be
to find some initial quality data, i.e. find
some defect prone areas to focus the fur-
ther test on. This test MUST be automated
in any case.

The main test consists of all the pre-
planned test cases. They are run, failures
are recorded, defects found and repaired,
and new installations of the software
made in the test lab. Every new installa-
tion may include a new pre-test. The main
test takes most of the time during a test
execution project.

The after-test starts with every new re-
lease of the software. This is the phase
where optimization should occur. Part of
the after-test is regression testing, done
in order to find possible side-effects of de-
fect repair. But the main part is a shift of
focus. Exploratory testing is a natural part
of this phase.

Type of defects may be analyzed. A pos-
sible classification is described in [14]. In

principle, every defect is a symptom of a
weakness of some designer, and it should
be used to actively search for more de-
fects of the same kind.

Example: In a Y2K project, it was found
that sometimes programs would display
blank instead of zeroes in the year field
in year 2000. A scan for the correspond-
ing wrong code through many other pro-
grams produced many more instances of
the same problem.

Another approach is to concentrate more
tests on the more common kinds of de-
fects, as these might be more common in
the code. The problem is, however, that
such defects might already have been
found because the test was designed to
find more of this kind of defects. Careful
analysis is needed. Generally, apply the
abstractions of every defect found as a
checklist to more testing or analysis.

Location of defects may also be used to
focus testing. If an area of code has espe-
cially many failures, that area should be a
candidate for even more testing [7, 13].
Moreover during the analysis, care should
be taken to ensure that a high level of de-
fects in an area is not caused by especially
high test coverage in that area.

5. Making testing cheaper	

A viable strategy for cutting budgets and
time usage is to do the work in a more
productive and efficient way. This normally
involves applying technology. In software,
not only technology, but also personnel
qualifications seem to be ways to improve
efficiency and cut costs. This also applies
in testing.

TESTING

24 1/20141/2014

5.1. Automation

There exist many test automation tools.
Tools catalogues list more tools for every
new edition and the existing tools are more
and more powerful while not costing more
[12]. Automation can probably do most
in the area of test running and regression
testing. Experience has shown that more
test cases can be run for much less mon-
ey, often less than a third of the resourc-
es spent for manual testing. In addition,
automated tests often find more defects.
This is fine for software quality, but may hit
the testers, as the defect repair will delay
the project... Still, such tools are not very
popular, because they require an invest-
ment into training, learning and building
an infrastructure at start. Sometimes a lot
of money is spent in fighting with the tool.
For the productivity improvement, nothing
general can be said, as the application of
such tools is too dependent on platforms,
people and organization. Evaluate your
tools wisely; make sure they are fit for the
purpose. Anecdotal evidence prevails, and
for some projects automation has had a
great effect.

An area where test is nearly impossible
without automation is stress, volume and
performance testing. Here, the question is
either to do it automatically or not to do it
at all.

Test management can also be improved
considerably using tools for tracking test
cases, functions, defects and their repairs.
Such tools are now more and more often

coupled to test running automation tools.

In general, automation is interesting for
cutting testing budgets. You should, how-
ever, make sure you are organized, and
you should keep the cost for startup and
tool evaluation outside your project. Tools
help only if you have a group of people
who already know how to use them effec-
tively and efficiently. To bring in tools in
the last moment has a low potential to pay
off, and can do more harm than good.

5.2. The people factor - Few and good
people against many who know little

The largest obstacle to an adequate test-
ing staff is ignorance on the part of man-
agement. Some of them believe that “de-
velopment requires brilliance, but anybody
can be a tester.”

Testing requires skill and knowledge. With-
out application knowledge your testers do
not know what to look after. You get shal-
low test cases which do not find defects.
Without knowledge about common errors
the testers do not know how to make good
test cases (see remark below). Again, they
do not find defects. Without experience in
applying test methods people will use a lot
of unnecessary time to work out all the
details in a test plan.
		
If testing has to be cheap, the best is to
get a few highly experienced specialists
to collect the test candidates, and have
highly skilled testers to improvise the test
instead of working it out on paper. Skilled

Good test cases, i.e. test cases that have a high probability of finding errors, if there are
errors, are also called «destructive test cases».

REMARK

RISK AND BENEFIT BASED TESTING

1/2014 251/20141/2014

people will be able to work from a check-
list, pick equivalence classes, boundary
values, and destructive combinations by
improvisation. Non-skilled people will pro-
duce a lot of paper before having an even
less destructive test. A method for this is
called “exploratory testing”.

Testers must be at least equally smart,
equally good designers and have equal un-
derstanding of the functionality of the sys-
tem as coders. One could let the Function
Design Team Leader become the System
Test Team Leader as soon as functional
design is complete. Pre-sales, Documen-
tation, Training, Product Marketing and/or
Customer Support personnel should also
be included in the test team. This provides
early knowledge transfer (a win-win for
both development and the other organiza-
tion) and more resources than there ex-
ist full-time. Test execution requires lots
of bodies that don’t need to be there all of
the time, but need to have a critical and
informed eye on the software. You prob-
ably also need full-time testers, but not as
many as you would use in the peak testing
period. Full-time test team members are
good for test design and execution, but
also for building or implementing testing
tools and infrastructure during less busy
times.

If an improvised test has to be repeated,
there is a problem. But modern test au-
tomation tools can be run in a capture
mode, and such captured test may later
be edited for documentation and rerun-
ning purposes.

The message is: Get highly qualified peo-
ple for your test team!

6. Cutting testing work

Another way of cutting costs is to get rid of
part of the task. Get someone else to pay
for it or cut it out completely!

6.1. Who pays for unit testing?
	
Often, unit testing is done by the program-
mers and never turns up in any official
testing budget. The problem is that unit
testing is often not really done. Test cover-
age tool vendors often report that without
their tools, 40 - 50% of the code is never
unit tested. Many defects then survive un-
til later test phases. This means later test
phases have to test better, and they are
overloaded and delayed by finding all the
defects which could have been found ear-
lier.

As a test manager, you should require
higher standards for unit testing! This is
in line with modern “agile” approaches to
software development. Unit tests should
be automated as well and rerun every time
units are changed or integrated.
				
6.2. What about test entry criteria?

The idea is the same as in contracts with
external customers. If the supplier does
not meet the contract, the supplier gets no
acceptance and no money. Problems occur
when there is only one supplier and when
there is no tradition in requiring quality.
Both conditions are true in software. But
entry criteria can be applied if the test
group is strong enough. Criteria range
from the most trivial to advanced.

TESTING

26 1/20141/2014

Here is a small collection of what makes
the life in testing easier:

The system delivered to integration or •	
system test is complete
It has been run through static analysis •	
and defects are fixed
A code review has been done and de-•	
fects have been corrected
Unit testing has been done to the ac-•	
cepted standards (near 100% state-
ment coverage, for example)
Any required documentation is deliv-•	
ered and is of a certain quality
The units compile and can be installed •	
without trouble
The units should have passed some •	
functional test cases (smoke test).
Really bad units are sorted out and have •	
been subjected to special treatment like
extra reviews, reprogramming etc.

	
You will not be allowed to require all these
criteria. You may not be allowed to enforce
them. However you may turn projects into
a better state over time by applying entry
criteria. If every unit is reviewed, statically
analyzed and unit tested, you will have a
lot less problems to fight with later.

6.3. Less documentation

If a test is designed “by the book” it will
take a lot of work to document it. Not all
this is needed. Tests may be coded in a
high level language and may be self docu-
menting. A test log made by a test auto-
mation tool may do the service. Qualified
people may be able to make a good test
from checklists, and even repeat it. Check
out exactly which documentation you will
need and prepare no more. Most important
is a test plan with a description of what is
critical to test, and a test summary report

describing what has been done and the
risk of installation.

6.4. Cutting installation cost - strate-
gies for defect repair

Every defect delays testing and requires
an extra cost. You have to rerun the actual
test case, try to reproduce the defect, doc-
ument as much as you can, probably help
the designers debugging, and at the end
install a new version and retest it. This ex-
tra cost is impossible to control for a test
manager, as it is completely dependent on
system quality. The cost is normally not
budgeted for either. Still, this cost will oc-
cur. Here is some advice about how to keep
it low.	

6.5. When to correct a defect, when
not?

Every installation of a defect fix means
disruption: installing a new version, ini-
tializing it, retesting the fix, and retesting
the whole. The tasks can be minimized by
installing many fixes at once. This means
you have to wait for defect fixes. On the
other hand, if defect fixes themselves are
wrong, this strategy leads to more work
in debugging the new version. The fault
is not that easy to find. There will be an
optimum, dependent on system size, the
probability to introduce new defects, and
the cost of installation. For a good descrip-
tion of practical test exit criteria, see [2].
Here are some rules for optimizing the de-
fect repair work:

Rule 1: Repair only important defects!•	
Rule 2: Change requests and small de-•	
fects should be assigned to the next re-
lease!

RISK AND BENEFIT BASED TESTING

1/2014 271/20141/2014

Rule 3: Correct defects in groups! Nor-•	
mally only after blocking failures are
found.
Rule 4: Use an automated “smoke test” •	
to test any corrections immediately.

7. Strategies for prevention

The starting scenario for this paper is the
situation where everything is late and
where no professional budgeting has been
done. In most organization, there exist
no experience data and there exists no
serious attempt to really estimate costs
for development, testing, and error cost
in maintenance. Without experience data
there is no way to argue about the costs
of reducing a test.

The imperatives are:

You need a cost accounting scheme•	
You need to apply cost estimation based •	
on experience and models
You need to know how test quality and •	
maintenance trouble interact

Measure:

Size of project in lines of code, function •	
points, etc.
Percentage of work used in manage-•	
ment, development, reviews, test prep-
aration, test execution, and rework
Amount of rework during first three or •	

six months after release
Fault distribution, especially causes of •	
user detected problems.
Argue for testing resources by weight-•	
ing possible reductions in rework before
and after delivery against added testing
cost.

Papers showing how such cost and ben-
efit analysis can be done, using retrospec-
tive analysis, have been published in sev-
eral ESSI projects run by Otto Vinter from
Bruel&Kjær [6]. A different way to prevent
trouble is incremental delivery. The gen-
eral idea is to break up the system into
many small releases. The first delivery to
the customer is the least commercially ac-
ceptable system, namely, a system which
does exactly what the old one did, only
with new technology. From the test of this
first version you can learn about costs, er-
ror contents, bad areas, etc. - then you
have an opportunity to plan better.

8. Summary

Testing in a situation where management
cuts both budget and time is a bad game.
You have to endure and survive this game
and turn it into a success. The general
methodology for this situation is not to
test everything a little, but to concentrate
on high benefit areas and the worst areas.
Combine testing things with a high benefit
with testing “risky” areas.

Priority 1: Return the product as fast as possible to the developers, with a list of as
serious deficiencies as possible. BUT: Show them that there is hope, by highlighting
that most important areas of the product work.

Priority 2: Make sure that whenever you stop testing, you have done the best testing
in the time available!

SUMMARY

TESTING

28 1/20141/2014

[1] Joachim Karlsson & Kevin Ryan, “A Cost-Value Approach for Prioritizing Requirements”,
IEEE Software, Sept. 1997

[2] James Bach, “Good Enough Quality: Beyond the Buzzword”, IEEE Computer, Aug.
1997, pp. 96-98

[3] Risk-Based Testing, STLabs Report, vol. 3 no. 5 (info@stlabs.com)

[4] Ståle Amland, “Risk Based Testing of a Large Financial Application”, Proceedings of the
14th International Conference and Exposition on TESTING Computer Software, June 16-
19, 1997, Washington, D.C., USA.

[5] Tagji M. Khoshgoftaar, Edward B. Allan, Robert Halstead, Gary P. Trio, Ronald M. Flass,
“Using Process History to Predict Software Quality,” IEEE Computer, April 1998

[6] Several ESSI projects, about improving testing, and improving requirements quality,
have been run by Otto Vinter. Contact the author at otv@delta.dk.

[7] Ytzhak Levendel, “Improving Quality with a Manufacturing Process”, IEEE Software,
March 1991.

[8] “When the pursuit of quality destroys value”, by John Favaro, Testing Techniques News-
letter, May-June 1996.

[9] “Quality: How to Make It Pay,” Business Week, August 8, 1994

[10] Barry W. Boehm, Software Engineering Economics, Prentice Hall, 1981

 [11] Magne Jørgensen, 1994, “Empirical studies of software maintenance”, Thesis for the
Dr. Scient. degree, Research Report 188, University of Oslo.

[12] Lots of test tool catalogues exist. The easiest accessible key is the Test Tool FAQ list,
published regularly on Usenet newsgroup comp.software.testing. More links on the author’s
web site.

[13] T. M. Khoshgoftaar, E.B. Allan, R. Halstead, Gary P. Trio, R. M. Flass, «Using Process
History to Predict Software Quality», IEEE Computer, April 1998

[14] IEEE Standard 1044, A Standard Classification of Software Anomalies, IEEE Computer
Society.

[15] James Bach, «A framework for good enough testing», IEEE Computer Magazine, Oc-
tober 1998

[16] James Bach, “Risk Based Testing”, STQE Magazine,6/1999, www.stqemagazine.com

[17] Nathan Petschenik, “Practical Priorities in System Testing”, in “Software- State of the
Art” by DeMarco and Lister (ed), Sept. 1985, pp.18 ff

[18] James Whittaker developed Google’s ACC method https://sites.google.com/site/visual-
isingquality/techniques/acc-matrix, http://www.youtube.com/watch?v=cqwXUTjcabs .

[19] Martins Gills, Marints.gills@riti.lv, “Outsourcing: Distance is relative”, Professional Test-
er Magazine, Sept 2005.

REFERENCES
RISK AND BENEFIT BASED TESTING

1/2014 291/20141/2014

Hans Schaefer

Specialist in software testing

1952 born
1979 M. Eng. from Technical University of Braunschweig, Germany.
Computer science, railway signaling
1979-1986 software developer at research facilities in Germany and
Norway
1983-1986 Software tester, software quality consultant at SI (now
part of SINTEF), Norway
1984-1985 guest lectures about software quality assurance at Oslo
university
1985 and later: guest lectures about software testing at several Nor-
dic universities
1987-2014 Consultant in software testing, based in Norway, working
all over the world

ISTQB full advanced certified, since 2004 leader of Norwegian Test-
ing Board (ISTQB). Member of ISTQB Foundation Level Working
Group, responsible for ISTQB Foundation Syllabi.
Certified Mountain Guide, certified steam locomotive fireman.

I have been running my own company since 1987, specializing in
consulting about software testing, reviews and software quality mat-
ters. I am teaching seminars about software testing, mostly in Scan-
dinavian countries, Germany and China.

I have worked for most leading Norwegian companies, as well as
companies like Bombardier, Ericsson, Nokia, Statoil, Telenor, Vis-
ma.

www.softwaretesting.no
hschae@broadpark.no

AUTHOR

TESTING

30 1/20141/2014

How to measure quality?

QUALITY

What is Quality? – The great qual-
ity debate.

My personal point of view is that Quality
is not just “how many bugs exist in live”
it extends right the way through the SDLC
and throughout every walk of life, but to
discuss this further in any detail is imprac-
tical for the scope of the article, so here I
include only measures for things we can
actually control in test and that the firm I
work for is interested in.

Just about every person, whether in the
testing industry or part of the general pub-
lic has a different view of what quality is.
There immediately exists a problem with

this article therefore. How can we measure
something if we cannot define what is ac-
tually is? It is sometimes easier to answer
what quality isn’t – we know that good
quality is not a buggy piece of software
delivered outside of deadline and without
informing anyone of its capabilities for ex-
ample.

Every end product, be it tangible or oth-
erwise has an particular quality level as-
sociated with it – consider for example
the difference between a Rolls Royce and
a Mini – would the build quality be the

Philip Young

Recently at a software meet-up we posed a question of “how do people measure quality”
and were surprised to find that nobody really had an answer, or anything really concrete
to say on the subject. Indeed in some cases (mainly freelance software development
houses), quality was not even on the agenda, working software was shown to imply
quality had been achieved).

I found myself in a situation recently where I was able to alter the ways our firm meas-
ured quality and chose this moment to try some out some ideas that were new to us.
The article describes the problems I faced even just defining what quality actually is and
goes on to describe the associated measures that I created around my perception of it.
All the measures described below were split by user and by department and presented
to upper management on a rolling three monthly basis.

THE PURPOSE OF THIS ARTICLE

1/2014 311/20141/2014

HOW TO MEASURE QUALITY?

same in both these cars? Or would it be
the right quality for the company that is
selling them? Would a customer of these
firms say they exceed, match or under-
perform their expectations in regards to
their build quality? What about the quality
of individual buttons in the car? Or Ride
quality? etc. Quality means many things
to many people and this is why we cannot
just consider quality to be measured via
the number of bugs in live.

We must also consider what fits for the
particular organisation we work for to de-
termine what quality actually is. We also
need to think about what the perception
of quality is to a business that is designed
from the ground up to make profit – what
level of quality is good enough to a busi-
ness like that? Quality close to perfection
would not be needed in a case like this for
example. We are in fact saying then that
some bugs are allowable, as long as they
are not too severe? But what is severe? If
some bugs are allowable, how many? Do
we allow the same number of bugs and
the severity of them to be the same for
different sizes of projects? If not how do
we compare these? Can they be compared
across projects and smaller changes? We
must consider the product as a whole, and
include the quality of our processes and
estimation as well as bugs into the live en-
vironment.

Measuring Quality

I chose to measure quality in three ways:

1) Process

The process referred to below is not a rigid
process, we use a flexible tick-list to al-
low for addition or subtraction of points for

process improvement, but the results still
remained directly comparable over each
month. The results of this were split by
user and department each month.

The process measure asks if we are fol-
lowing the process correctly. If we do not
follow process, vital communication lines
are lost, a department may not be ready
for the change in time, the actual program
and configuration changes going live may
conflict with other changes etc

To measure process, I used a pre-existing
document that was already being followed
to cover off the above points and identified
the most critical points on it. Each of these
scored a “1” when the point was adequate-
ly covered, so whilst this did introduce
an overhead of checking the output from
these each month. I knew that under the
principles of measurement, once I started
measuring this process, it very quickly be-
came followed, so I was able to use this
often citied disadvantage of measurement
for departmental gain. The measurement
of our process was always intended to be
a quick win, almost immediately people
followed the process more accurately than
they had been and if anything it created a
positive vibe during the monthly meeting
with the worker when I could observe evi-
dence that due process had been followed
and present this to upper management as
a positive result. The measure is intend-
ed to be simple; it just needed to achieve
the desired effect described above. Figure
1 shows example output from this mea-
sure.

2) Estimation

Estimation at the time was something we
were not doing formally, we had an ad-

32 1/20141/2014

ditional challenge as many of our changes
are smaller in size (say 1-2 weeks max) so
I chose to measure the estimates in hours
and recorded them with Microsoft Project.

The estimate measure as if we doing things
when we say we will. It is great having ex-
cellent quality, but delivering this at a rate
of one change a year is not, I used this
measure to provide a throughput check to
quality. If a worker was consistently out
on estimation, the reasons why this is the
case need to be examined, it may not nec-
essarily mean that the worker wasn’t able
to complete their work on time.

Reasons for an estimate being out might
be:

Inaccurate specifications causing issues •	
that are raised at test time
Highlighting a training issue with a par-•	
ticular person
Highlighting difficulties a person had •	
with a particular change
etc•	

When looking at estimates, take caution,
if the required estimate accuracy imposed
is too draconian, people will quickly learn
to give an estimate they can work to and
we have must remember that an estimate

IMPORTANT

Fig. 1. The process measure

QUALITY

1/2014 331/20141/2014

is exactly that. Ideally, use the estimation
measure to encourage not discourage peo-
ple from being honest in the hours worked
on a change compared to the hours that
they said the change would take, only in
this way can the measure have any sig-
nificance. Use this measure to empower
the worker to critique their own work and
gain valuable insight into what is actually
going wrong. I introduced test exception
reports as a direct result of this measure
and fed these back to the development
team managers to explain why a change
had taken the time it had. Over the lon-
ger term, these exception reports would
be examined for common themes.

The actual implementation of the estimate
measure involved us breaking down the

HOW TO MEASURE QUALITY?

testing of a change into the categories of:

Investigation and recreation•	
Test plan creation•	
Data creation•	
Testing•	
Second iteration•	
Third iteration•	
Regression•	
UAT•	

An estimate was provided by the worker
for the change in each of these catego-
ries. These were then piped into Microsoft
Project. We used proprietary time logging
software to log and report on time spent
in each of those categories then piped
that data into the project. After this I ran
a using the Baseline Work Report to pull

Fig. 2. MS Project - Baseline Work Report – by change

IMPORTANT

34 1/20141/2014

ated between cosmetic bugs (less severe)
to bugs that impacted the customer direct-
ly (very severe), with bugs that affected
workers (not customers) only somewhere
in between.

A warranty period for changes put live al-
ready exists so when changes are put live,
if no bugs are found within 90 days of that
live date, the change is considered to be a
success. All changes start as scoring 100%
with varying percentages deducted (as de-
termined by the scoring model when bugs
are found). As bugs accumulate through
the change over that 90 day period, the
score for the change gets closer to 0%.
Over time, this provides a good sight of
how effective an individual is at testing
changes (Figure 4) and this can be amal-
gamated further for departmental statis-
tics (Figure 5).

The long term trends of bugs by worker
are valuable here but only when looked at
with caution, there may be a short term
blip in someone’s stats and care must be
taken to look at the reasons why before
any trends are implied.

the data off. A negative or positive vari-
ance was calculated based on the amount
of time over or under the estimate that
a person was. This data per change was
then rolled into an ongoing graphical rep-
resentation of estimate accuracy by user
and further amalgamated into a Alpha cat-
egory. In this way I was able to not fo-
cus on estimates for specific changes, but
whether overall that they were being hit
or not, then using this data I could drill
down into the categories to see where the
estimate had been blown and start to ask
reasonable questions about why this could
be the case. Figure 2 shows the initial out-
put from the completed change and figure
3 shows how I amalgamated this over nu-
merous changes per user.

3) Bugs in live

We have already established that any at-
tempt to measure quality results in a
method of measurement that can be con-
sidered an imprecise science.

Bugs in live ultimately affect end users
so we must include them in some kind of
quality measure. A scoring model was cre-

IMPORTANT

Fig. 3. Estimates for changes completed - amalgamated by person

QUALITY

1/2014 351/20141/2014

Fig. 4. How bugs against changes are recorded

IMPORTANT

Fig. 4. An example with hypothetical stats for how the bugs were collated

HOW TO MEASURE QUALITY?

36 1/20141/2014

Trends of poor quality may be caused by:

The types of changes that person has •	
been working on and their relative lev-
els of complexity
The experience level of the tester•	
Difficulty in writing the change experi-•	
enced by the programmer.
Complexity of the programs altered•	
etc•	

How would I use this informa-
tion?

I chose to put all this information above
into a monthly Key Performance Indica-
tor pack for each individual, and produced
an amalgamated version of this for up-
per management. It was very tempting
to incentivise works based on quality and
throughput etc, but those ideas are not
without their pitfalls and it’s something
that you must decide for yourselves.

Philip Young

Phil Young is a Graduate from Coventry University and is
currently studying a second Degree at Swansea University
whilst working for Admiral Insurance, Cardiff, UK. Phil has
worked for Admiral for 15 years; starting in the call centre
environment. Phil eventually earned his spot in the software
testing team after helping them out with a few projects on
a UAT basis. After moving to the Software Test Team and
operating in a Lead capacity for a number of years, Phil was
officially made a Lead Test Analyst for the Test Team “Rapid
Response” and was responsible for overseeing delivery of
small and valuable changes. Phil graduated to Manager of
this team within a year and was an active contributor to a
local Software Testing Group whose aim was to expose tes-
ters of all levels to industry differences in Test approaches.
Personal commitments meant that Phil had to step down
from the management role but he still continues to work as
a Senior Test Analyst for Admiral.

Phil can be contacted at philyoung99@googlemail.com

AUTHOR

Summary

It is well documented that as something is
measured, it often improves, but does it
really? Or do we as humans become more
adept at working to the boundaries we are
given perhaps? Consideration needs to be
given to changing measures regularly to
avoid this. The problem of course is that
we move into an area where new measures
cannot be compared to old measures, as
they say, “you pays yer money and you
takes your choice”. Often, the trickiest part
of measuring something is not only know-
ing what to measure, but when you have
measured it enough.

QUALITY

1/2014 371/20141/2014

HOW TO MEASURE QUALITY?

    
    
    
   
   
   
    


      
     
    
      

   


 

 


 


 

 


 



 





   



38 1/2014

Publisher
VWT Polska Michał Kruszewski
Przy Lasku 8 lok. 52, 01-424 Warszawa
Number NIP 5272137158
Number REGON 142455963

Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl
Piotr Poznański
piotr.poznanski@quale.pl

WWW
www.qualemagazine.com
www.quale.pl

Facebook
http://www.facebook.com/qualemagazine

Advertisement
info@quale.pl

Cooperation
If you are interested in cooperating with us,
please send us a message:
info@quale.pl

Magazine

Magazine

All trade marks published are property of the
proper companies.

Copyright:
All papers published are part of the copyright
of the respective author or enterprise. It is
prohibited to rerelease, copy or modify the
contents of this paper without their written
agreement.

The following graphics have been used:

Cover

Architecture Blue Building Business City http://
pixabay.com/en/architecture-blue-building-
business-22231/

Other

Laser Laser Light Research Laboratory Scien-
ce http://pixabay.com/en/laser-laser-light-rese-
arch-11646/

Pen Office Leave Office Accessories Lid http://
pixabay.com/en/pen-office-leave-office-acces-
sories-62374/

Newton’s Cradle Balls Sphere Action Reaction
http://pixabay.com/en/newton-s-cradle-balls-
sphere-action-256213/

