
1

The 6th WCSQ

Q
ua

le
21

/2
01

4

Hash verification in regression
testing

Maciej Chmielarz

Torment or Joy of testing ?

Minimize the project risk
Karolina Zmitrowicz

Bartłomiej Prędki
Krzysztof Chytła

2 1/20141/2014

Content

EDITORSHIP Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl
Piotr Poznański
piotr.poznanski@quale.pl

Cooperation:
Tomasz Olszewski

Website:
www.quale.pl/en (ENG)
www.quale.pl (PL)

Facebook:
http://www.facebook.com/qualemagazine

3. Torment of testing
Krzysztof Chytła

5. Joy of testing
Bartłomiej Prędki

DIFFERENT POINT OF VIEW

SOFTWARE ENGINEERING
7. Minimize the project risk - biuld good business require-
ments!
Karolina Zmitrowicz

25. Hash verification in regression testing
Maciej Chmielarz

TESTING

32. TestingCup
Stefania Winkel and Łukasz Gałuszka

EVENTS

1/2014 31/20141/2014

DIFFERENT POINT OF VIEW

Torment of testing
Krzysztof Chytła

Greetings my respectable fellow Editor!
How is life? I hope everything’s fine or at
least better than on my end of the wire.
I’ve been suffering from a spring depres-
sion or mild seasonal affective disorder,
if you like. Bad weather really brings me
down and causes that gloomy, melancholic
mood. Surprisingly, there is at least one
positive downside of such state of mind – it
makes you wonder. I thought that some of
my reflections on Weltschmerz are worth
sharing with you. I hope you will spare a
minute to read or even support your old
buddy with kind word. Let’s get started.

Existential “to be, or not to be” often
haunts the minds of testers but how can
it be that life is so miserable? How can I
go on, from day to day [Freddie Mercury],
stumbling upon lines and branches of code
tangled into knots of mutually dependent
functionalities? Mechanically repeating
manual test cases like a maniac, over and
over, from 9 to 5 – often longer – five days
a week… and all for nothing. Yeah, noth-
ing. Those once pesticide prone buggies
evolved, lurk hidden deep inside, invisible

even for a well trained eye. I haven’t filed
a single defect report in weeks. Kingdom
for a bug! [Shakespeare] Truly depressing.
I guess I need to consult my shrink before
I drown in the pool of apathy and sadness.
Is it sane to feast upon someone else’s
failures, to laugh when it doesn’t work?

Whose fault is it when it doesn’t work?
Tester’s – it’s so obvious! Project delays?
Blame the tester. We’ve been through that
list last time. It is so hard to explain that
soft had already been broken when you
first touched it. In such cases you can al-
most hear you brain singing “It wasn’t me”
along with Shaggy. “It’s not a bug, it’s a
feature” is as good as it can get howev-
er “stack trace or GTFO” amplified with a
nasty green is much more common. As a
tester you need to be cool as a cucumber.
Restrain yourself from slapping faces and
breaking office stuff. Keep calm and carry
on testing like a pro! [GB].

I know, I know. All in all, everything is
fine and software really works as expect-
ed! Things which don’t aren’t real issues

4 1/20141/2014

or bugs but unrealistic scenarios and vivid
fantasies. “Those aren’t the droids you’re
looking for” [Star Wars] young testing
padawan blinded by the Force of quality.

Thank you? “Thank you” is not on the vo-
cabulary of most people facing testers.
How come that testers who do nothing
but point out errors need to be thanked?
That’s preposterous.

On the other hand releasing software on
Fridays past 5 PM is not. Thou shall test till
your eyes bleed as playing the low effec-
tiveness of late night testing card doesn’t
break through to the minds of managers.
Instead one should be proactive and vol-
unteer for the Saturday crunching just in
case and hope to get paid for the over-
time. Remember, depression has nothing
to do with lack of ambition.

Automation brings testing to a whole new
level? Develops processional competence?
Oh no, dear Editor Sir, by no means will I
help Skynet [Terminator] gain control over
the human kind!

My fragile dreams have been broken
[Anathema]. All what’s left is torment of
testing.

Huh. That sounds bitter but I’m better off
having thrown it all out. Actually I feel a bit
- or even a byte - better. Sharing thoughts,
even those melancholic ones, definitely
helps you clear you mind. It’s been really
nice writing to you however there’s some-
thing else I should have done a long time
ago. No more time to waste – it’s high time
for holidays!

TORMENT OF TESTING

Krzysztof Chytla

Test manager, designer and automation specialist with we-
alth of experience in embedded systems domain. Participa-
ted in big international projects assuring the highest product
quality. Flesh and blood tester curiously analyzing rapidly
expanding world of new technologies.

Author of translations and publications. Wroclaw University
of Technology, Faculty of Electronics graduate. Trainer and
coach passionate about acquiring and sharing knowledge.

On a personal note big fan of fantasy, science fiction and
board games accopanied by a a glass of single malt whisky
- an editor’s best friend.

AUTHOR

1/2014 51/20141/2014

DIFFERENT POINT OF VIEW

Joy of testing
Bartłomiej Prędki

Actually, I had wanted to start with “Let
me welcome you, dear Deputy Editor in
Chief” but I noticed that the official ap-
proach to greeting brings you depression
and anxiety. Therefore I’ll make it less for-
mal – Hi there, my fellow! I do not know
where your grief and sadness come from
– just a few days of bad weather shouldn’t
be a surprise in our climate zone. When it
rains, things start growing here and there
- so don’t worry, just be happy like Bobby
McFerrin plus hope there’s no ground frost
or you might slip and get into real trouble.
And – by the way – to call yourself old, you
would need to spend much more time on
wondering.

You write about anguish of repetitive tasks
done throughout countless number of
hours and days. As they say - that’s what
the job is like. I also don’t understand your
complaints on manual testing – you defi-
nitely need to change your approach! Your
testing should be started with words: “give
me your kings, let me squeeze them in my
hands!” [Freddie Mercury]. I could have
also written that if the bug still remains,
change pesticides – but nothing like that

will take place. Sometimes, when there’s
a lot of manual routine tasks to perform
I add a bit of exploration to it. How it’s
done? Very simply – after a few planned
test cases - BOOM! – I unexpectedly jump
to another area. This is because the en-
emy does not expect an attack from the
left flank. The only person depressed at
such moment would be the author of the
code. Sweet mercy is nobility’s true badge
[William Shakespeare].

Situations called “it was already broken” or
“it’s not a bug, it’s a feature” don’t cause
any stress for me at all. Complying with
professional approach, I ask for an official
change request when it was already bro-
ken (e.g. defect number from the previous
release) or for a chapter in the documen-
tation describing alleged “feature”. And it’s
not like a relaxing massage; it’s just a reg-
ular slap in da face. And of course it’s done
with your hand, hence manual! Plus it re-
ally works! A separate issue is that pro-
fessional approach should not be applied
to individuals just occasionally and merely
benefiting from the shower…

6 1/20141/2014

JOY OF TESTING

Finally it works? What a surprise! And
they don’t say “thank you” to testers be-
cause we just point out errors? Oh dear,
I’m depressed and torn and… Oops! I just
dropped the s**t I was about to give.
I’ll tell you what to do, young software
padawan blinded by the Force of quality.
Shortly after having found several critical
bugs - just pass by the area occupied by
C++ Dark Forces, hoarsely whispering “I
am your father” [Star Wars]. Stampede
guaranteed...

I won’t tell you what I would do to people
planning releases just before the weekend
(did I mention something about the censor-
ship last time?). But as an absolutely non-
vindictive person, I let myself to bounce-
back during the weekend. As you know,
only testers and developers work then,
ergo, this means no control. The natural
thing is that time flies by faster while hav-
ing a bit of warming liquids. Truly I say
unto you - agile testing takes on a whole

new meaning then. And you can go home
in the morning and sing: “you shook me
all night long” [AC/DC].

I don’t even want to start the automation
topic discussion. It’s kind of “blondes vs.
brunettes” or “petrol vs. diesel” dispute.
As I mentioned, manual slap from the tes-
ter hurts much more than a virtual ping
from the automation software.

You say torment, huh? Sure, a little bit,
like everywhere else. Joy and fun? It’s no-
where to be found but here, where testers
are knights and bugs are the dragons.

Still, I’m glad that you feel better now.
Sometimes you need a different view to
see that the situation is not always as bad
as it looks.

Hey wait, what holidays? At this time of
the year? How could you even dare to
complain ...

Bartłomiej Prędki

I’ve started my professional experience in 2004 as a tester of mass-
market mobile applications. Within next years I gained an experience
in Testing and Quality Assurance areas, mostly focused on Telecom-
munications industry.

During my career I was involved in testing, managing testing proc-
esses, training, technical support, requirement analysis, recruitment,
technical documentation creation and review.
Besides my mobile and telecommunications experience, I was also
involved in financial and banking systems related projects. Currently
I possess the role of QA Team Lead.

I’m a holder of two ISTQB Advanced certificates: Technical Test Ana-
lyst and Test Manager

I live and work in Wroclaw, Poland.

AUTHOR

1/2014 71/20141/2014

SOFTWARE ENGINEERING

Karolina Zmitrowicz

Minimize the project risk
Build good business requirements

What is this article about? Not much about the typical reasons of
projects failures, as there are plenty of papers on this topic. We will
focus on one of the core problems with IT projects – requirements.
Moreover, we are going to focus on business requirements, their
meaning and impact on projects. I believe we all know that business
requirements are of crucial impact for any project, as they create a
base for project planning, estimations, scope and content definition
and realization of works.

The role of requirements in IT projects is not the only subject of this
article. It is important to know the meaning of requirements, but it
is even more important to know how to build requirements in a way
allowing to avoid typical risks and problems. Therefore we will talk
about principles of building good requirements.

ABSTRACT

8 1/20141/2014

MINIMIZE THE PROJECT RISKI

What is the problem?

To be able to define a solution for a prob-
lem, we need to identify the problem first.
In this case, we are talking about reasons
why projects fail. Let’s then consider why
do they fail. We can start from analyzing
common statistics and researches, for ex-
ample, the Chaos report. The report pres-
ents a set of statistics and their interpreta-

tion prepared by Standish Group. Among
others, this report shows the main reasons
of project failure, most important success
factors and other statistics related to the
realization of IT projects. Let’s have a look
at some statistics showing the main proj-
ect success criteria (Table 1 Project suc-
cess criteria [1]).

CHAOS REPORT

Tab. 1. Project success criteria

1994 1999 2001 2004 2010, 2012

1. User Involve-
ment
2. Executive
Management
Support
3. Clear Sta-
tement Of
Requirements
4. Proper Plan-
ning
5. Realistic
Expectations
6. Smaller Pro-
ject Milestones
7. Competent
Staff
8. Ownership
9. Clear Vision
And Objectives
10. Hard-Wor-
king, Focused
Staff

1. User Involve-
ment
2. Executive
Management
Support
3. Smaller Pro-
ject Milestones
4. Competent
Staff
5. Ownership

1. Executive
Management
Support
2. User Involve-
ment
3. Competent
Staff
4. Smaller Pro-
ject Milestones
5. Clear Vision
And Objectives

1. User Involve-
ment
2. Executive
Management
Support
3. Smaller Pro-
ject Milestones
4. Hard-Wor-
king, Focused
Staff
5. Clear Vision
And Objectives

1. Executive
Support
2. User Involve-
ment
3. Clear
Business Obje-
ctives
4. Emotional
Maturity
5. Optimizing
Scope
6. Agile Pro-
cess
7. Project
Management
Expertise
8. Skilled Reso-
urces
9. Execution
10. Tools &
Infrastructure

1/2014 91/20141/2014

SOFTWARE ENGINEERING

As we can see the most important success
factors can be defined as follows:

Executive support•
User involvement•
Clear business objectives•
Emotional maturity•
Optimizing scope•

Smaller project milestones are also of
great importance, as well as clear state-
ment of requirements. How does it deal
with requirements? Let’s check one more
thing before answering this question.

Success factors are interesting, but rea-
sons of failure should be as interesting
as well. Summarizing information coming
from different researches, we can say, that
the primary reasons for failure are:

Lack of user involvement. Poor user in-•
volvement results in the fact that the
solutions we create may not meet user
requirements or do not support users
tasks. In the end, the user receives a
product that does not meet expecta-
tions and is not useful in real-life us-
age.

Lack of management commitment. This •
is serious problem, as if you don’t have
management commitment, there is a
risk that there is nobody responsible
for the outcome of a project. And if no
one is responsible – no one cares about
its success or failure…

Problems with requirements and speci-•
fications. Issues with requirements and
specifications is a very broad topic cov-
ering all known problems with require-
ments – bad quality of requirements,
incomplete requirements, requirements

that do not meet specific acceptance
criteria or cannot be measured and
tested. All these problems cause that
the product being developed is based
on wrong or partially wrong assump-
tions, therefore the risk of producing
the wrong product increases.

Changing requirements. When require-•
ments change, the whole base for solu-
tion development changes. This causes
unstable scope, changing concepts
for implementation and even chaos.
Changing requirements may be related
to a changing business which is some-
thing quite natural for some business
areas or domains and therefore cannot
be avoided, but the reason of unstable
requirements may be different – it may
result from lack or poor quality of busi-
ness goals for a given project. If we do
not have clear business goals, in fact
we do not know what we are going to
achieve at the end – so, we do not know
what we are doing.

Unclear objectives. This is a very com-•
mon problem in case of many IT (and
not only IT) projects. Projects initiated
without establishing business goals and
objectives to be achieved as a result of
that project. If there is nothing to guide
the project and define its business de-
liverable, you don’t know what are you
doing and what for. If you don’t know
what are you doing, how can you pro-
pose any reasonable solutions? In other
words – any solution will be wrong as
there is no way to meet a goal, if the
goal is not known.

Effects of the issues above are quite obvi-
ous. If we have problems at early stages
of the project – and all the previous fac-

10 1/20141/2014

tors are in general related with early stag-
es – we will have more problems later. As
you all know, the later the problem is de-
tected, the more it costs to fix it. In case
of problems related with requirements or
– what is even worst – business goals, the
cost of problem resolution is much higher
than fixing a simple bug in the code. Why?
Because we will have to deal with some-
thing that is the base of the project.

What is the real problem?

Coming back to the Chaos report and the
source of the problems – let’s think which
of the factors are really reasons of project
failure? Are they problems or just symp-
toms of something else?

To answer this question, let’s think what
can we see in real life?

There is no analysis and preparation for •
a project. We don’t research the mar-
ket, the user’s needs, our own busi-
ness processes. We just used to think:
“Let’s make a software” and then we
are initiating the project. Projects are
initiated without deep analysis, and de-
termination of main goals, risks, ben-
efits... The first step should be so called
enterprise analysis [BABOK] where we
are looking for business problems to
be solved. This research includes busi-
ness processes analysis, establishing
business goals and needs, which in fact
require knowing the organization strat-
egy, weak and strong points, chances
etc. In other words – at first we need to
know AS IS and then, on this basis we
are able to define TO BE, which forms a
background for our project.

Projects tend to deliver SOFTWARE, not •
SOLUTIONS. What does our customer
want? A software? Really? The real aim
of any project is not a software – but
a solution resolving a given business
problem and allowing to achieve specif-
ic goals. This solution may include soft-
ware components, but we cannot just
focus on software, as there are many
other things that can a part of the final
solution – like new business (products,
services), changes of business process-
es, or procedures and many other, non-
software related aspects.

Main success criteria are usually time •
and cost. Too often we can see thinking
like: if you deliver on time and within a
budget, your project succeeds. It is not
enough. There is something very im-
portant missing – quality.

To be able to say that we succeed, we
need to achieve a specific level of quality.
Even if you keep your project within the
time and budget limitations, but you not
provide the expected quality, you cannot
say that the project was successfully com-
pleted. You may deliver on time and within
a budget but the product you released is
not the one that the customer needed and
wanted.

Ok, but... What is this mysterious quality?
There are many definitions, for the pur-
pose of this discussion let’s follow one, es-
tablished by ISO 9000. The ISO definition
says that “quality is degree to which a set
of inherent characteristics fulfills require-
ments”. This explanation is simple and
expresses the main important aspect of
quality – quality is determined by meeting
specific requirements. You may say that it
is a very subjective measure. Yes, indeed,

MINIMIZE THE PROJECT RISKI

1/2014 111/20141/2014

it is. That’s why we need to specify require-
ments in very clear and measurable (even
numeric) way. Otherwise we will never be
sure if the quality we deliver is the quality
expected by the stakeholders.

Sounds quite simple, isn’t it? The problem
is how to assure quality if:

Stated requirements are not com-•
plete?

Stated requirements have no business •
value? In the end we will deliver product
that do not bring any real value to the
customer. We are just producing soft-
ware for the sake of having software.

We don’t know how requirements meet •
business goals? We cannot measure
how and even if our solution resolves
given business problem.

So let’s say it clear - the real problem we
have in projects are requirements... Busi-
ness requirements. We fail to define them
in a way allowing to meet the stakeholders
expectations. We fail to define them in a
way that allows to ensure that the product
deliver a value.

Writing Business Requirements

It is easy to say, let’s write good require-
ments otherwise we will have problems in
the later stages of the project. But how to
do it, how to write good requirements? You
can start from old, well known truths:

Learn from mistakes. We know what •
mistakes we did. Avoid them.

Follow best practices! There are known, •
checked, tested rules and principles to

be followed. Use them.

Tom Gilb defined a set of ten rules to be
followed when working with requirements.
These rules are called Ten Key Principles
for Successful Requirements. Let’s discuss
them now.

1. Understand the top level critical ob-
jectives

Let’s think about our common experiences
and ask ourselves how do we start proj-
ects? It there any serious research, analy-
sis etc.? Not always, isn’t it? In fact, very
rarely. Many projects are initiated by just
writing a few statements which we believe
are business requirements. But these state-
ments have no real background and sense
if we do not define high-level requirements
- the ones that come from the key stake-
holders and create a base for the project.
The ones that funded the project and are
called as Top Level Objectives. These re-
quirements should express what we want
to achieve as a result of the project; they
should express business goals. In most
projects there are no high-level require-
ments at all – we start from requirements
describing the solution itself. This way we
missed an important aspect of the proj-
ect – what are we going to achieve? Even
if we have some high-level requirements,
there is often another problem – they are
often vaguely stated, and ignored by the
project team. We – unfortunately – tend
to start from describing, sometimes very
detailed – elements of target solution. The
first step should be to define and under-
stand what is the business purpose and
deliverables of the project.

How to do it and determine goals of the
project in business terms? Think about

SOFTWARE ENGINEERING

12 1/20141/2014

the business and about the problem you
want to resolve. For example, if you al-
ready have a system which was found to
be hard to understand and use by users,
the example of Initial Top Level Objective
may be:

Make the system much easier to under-
stand and use, than has been the case
with the previous system

If you are working in banking and deal with
the problem that completing a transaction
takes too much time, the example of Ini-
tial Top Level Objective may be:

The solution will allow to perform core
banking transaction in shorter time

Of course, such statements are not really
measurable (what does it mean: “easi-
er” or “in shorter time”?) therefore they
should be refined by adding some detailed
words making them more numerical and
measurable (How much easier? Compar-
ing to what? What is “shorter time”?).

2. Look towards value delivery

One of the most typical problems in IT is
that we focus solely on producing soft-
ware. Real business is not about any soft-
ware. It is about systems, including in-
formation systems. Therefore you should
change your way of thinking and think
about system as a whole instead of focus-
ing on software. Remember and recognize
the fact that the main – and real – goal of
a project is delivering realized value (ben-
efits) to the stakeholders.

You should also understand and accept the
fact that realized value is not the defined
functionality! As defined by Tom Gilb, value
is the benefit we think we get from some-

thing. So at first we need to determine
the value that we are looking for. Again,
sounds easy but is rather difficult to apply
in real-life projects. Why? Because con-
ventional requirements engineering is not
closely enough coupled with “value” and
therefore we have serious problems when
trying to define “value”. We used to focus
on functions, attributes, screens and lay-
outs of the final solution instead of think-
ing about the value we need to get. We
tend to forget that we do not make proj-
ects for fun and for the sake of making
software, but to get clearly defined benefit
for the customers and sponsors. Moreover,
to be able to ensure we deliver this ben-
efit, it should be expressed in measurable
terms as only then we are able to verify if
the project really brought us with the ex-
pected value.

What if we miss this aspect of the pro-
cess and do not define value? What if the
requirements do not express value? Well,
then we will have a problem. At first, we
fail to deliver the value expected, even if
„requirements” are satisfied. How is it pos-
sible? Well, we may just deliver product,
which is compliant with requirements, but
not useful for the stakeholders.

Another consequence is that if the require-
ments do not express value we may miss
other things necessary to actually deliver
complete value to stakeholders on time.
Why? Because there is a risk we will not
know that there are other things impor-
tant or necessary to get the full value. For
example – if you focus on software solu-
tions, instead of thinking about the value
and benefits, you may miss the fact that
to be able to get the full benefit from using
the software, a change of business pro-
cess is also necessary. An example can be
introducing a workflow system to support

MINIMIZE THE PROJECT RISKI

1/2014 131/20141/2014

processing of documentation without ana-
lyzing and optimizing the whole process of
documentation flow.

3. Define a „requirement” as a „stake-
holder-valued end state”

We are talking about requirements but let’s
stop for a second and answer the ques-
tion – what a requirement is? What it is for
you, and what it is for your customer?

Before starting any project work you
should ensure there is common, agreed
and accepted definition of a requirement.
You just need a glossary.

Tom Gilb proposed a definition describing
a high-level requirement as a stakeholder-
valued end state. It is important to notice
that the focus is put (again) on value.

In addition, to ensure effective and trans-
parent communication, define other terms
you will use in the project:

Requirement specification•
Solution•
Product•
Stakeholder•
Value•
Benefit•
Business goal •

4. Think stakeholders: not just users
and customers!

One of typical mistakes made when plan-
ning project works is missing important
stakeholders. What’s the problem, you
might say. It is enough to know about the
customer, business and users as they re-
quested the product and pay for it. The
problem is, it is not enough. Users and

customers usually provides directly known
and “obvious” requirements. But there are
other important aspects and information
affecting the project or product as well
– competitor’s data, market needs, limi-
tations, and technology. This kind of in-
formation rarely comes as written require-
ments; it is usually discovered as a part
of requirements elicitation and analysis.
However to be able to collect this data we
need to have someone to ask – we need
stakeholders supporting requirements en-
gineering works.

Therefore it is very important to remem-
ber that stakeholders are not only users or
customers. There are many other stake-
holders involved in every IT project. We
should not focus requirements only on
user or customer needs as in this case we
may miss important needs, limitations or
information coming from other sources.
Deeper analysis requires broader area of
stakeholders, their needs and values.

One of the basis definitions of stakehold-
ers says that a stakeholder is anyone or
anything that has an interest in the sys-
tem. So, stakeholders are not just the end-
users and customers, the following should
be also considered: IT development, IT
maintenance, senior management, gov-
ernment, regulation bodies, etc.

5. Quantify requirements as a basis for
software engineering

If you can not measure it, you can not im-
prove it – Lord Kelvin

What is our work about? It is about engi-
neering, right? Software engineering. And
what are we doing? Engineering? Not real-
ly… Real engineering is not about words as

SOFTWARE ENGINEERING

14 1/20141/2014

we used to do when working with require-
ments and specifications, but it is about
numbers and measures. The problem we
face in real IT projects is the lack of nu-
meric quality requirements. Why? Because
we don’t know how to do it and how to
practice real engineering in the context of
software. We use words because no one
teaches how to define requirements in nu-
meric form.

Don’t produce requirements specifications
consisting merely of words as they will not
be measurable and testable. They will not
allow you to check if everything what was
to be done is really done. There is a solu-
tion – you can just define a scale of mea-
sure to be used when describing require-
ments. You can follow Tom Gilb’s approach
or develop your own approach.

6. Don’t mix ends and means

Albert Einstein said “Perfection of means
and confusion of ends seem to character-
ize our age”.

So true, isn’t it? We mix end and means
over and over again. We don’t know what
we want, but we are saying how to do
things. Starting from the end is a common
problem in IT. Why establishing the final
result seems to be so difficult? Because
solutions are more concrete. They are vis-
ible, we can see them, feel them, under-
stand them. Qualities we want are more
abstract. They require more analysis and
thinking. We can define a solution faster
and easier than establish a business goal,
especially as working on business goals
requires more business knowledge.

Usability.Intuitiveness:

Type: Marketing Product Quality Requirement.

Ambition: Any potential user, any age, can immediately discover and correctly
use all functions of the product, without training, help from friends, or external
documentation

Scale: % chance that defined [User] can successfully complete defined [Tasks]
Immediately, with no External help.

Meter [Consumer Reports] tests all tasks for all defined user types, and gives
public report.

Goal [Market = USA, User = Seniors, Product = New Version, Task = Photo
Tasks Set, When = 2012] 80% ±10% <- Draft Marketing Plan

REQUIREMENT EXAMPLE

MINIMIZE THE PROJECT RISKI

Fig. 1. Example of a measurable description of a requirement,
using Planguage [2][3]

1/2014 151/20141/2014

The problem is that to get what you want;
you must first state what you want. Don’t
mix ends and means. Don’t start with
means as you will not get what you want.
Don’t specify a solution, design and/or ar-
chitecture, instead of what you really want
– real requirement.

Why not? It is easier, you may say. Yes,
it seems to be easier but remember: “Be
careful what you ask for, you might just
get it”. And you may be very surprised
with this what you got….

If you specify a solution, not “what you re-
ally want” [2]:

You might not get what you really want. •
If you haven’t specified what you want,
how can you expect you will get it?

The solution you have specified might •
cost too much or have bad side effects,
even if you do get what you want. Let’s
focus on the goals – leave the means
for further analysis. That is why we
have requirements analysis and solu-
tion designing activities to propose a
solution design meeting you require-
ments in best possible way, with mini-
mal risks. But there can’t be any real
requirements analysis if you already
defined means…

There may be much better solutions •
you don’t know about yet. As above –
if you state how to do what you want,
you do not give a change to analyze
your needs and propose a design of a
solution meeting you requirements in
best possible way.

Requirements should be written indepen-
dent of the system that would be built to
satisfy the need.

Instead: “The system must print a
transaction receipt for the customer.”

Use: “The customer must be provided
with a transaction confirmation after
every transaction, within 2 minutes af-
ter completing a transaction.”

Great, but how to find out what you really
want? There are many techniques and so-
lution, but you can start with using simple
technique called “5 x Why”.

Search for the real need by asking “Why”?
Let’s consider an example. Imagine, your
customer is asking you to provide him with
a report. To get the answer what the cus-
tomer really needs, you could initiate such
conversation:

You: Why do you want <the report>?

Customer: Because I really want <spe-
cific data> and assume I will get it
through this report.

You: Then why do you want <specific
data>?

Customer: Because I really want <to
calculate X> and assume that is the
best way to get <the report>.

The simulation above is not as unrealis-
tic as it may look at first glance. It is a
quite often situation, that applying “5 x
Why” technique allows to state that some
requirements are not needed or are not
requirements at all (instead, they could
be for example, a part of the solution de-
sign).

SOFTWARE ENGINEERING

16 1/20141/2014

7. Focus on the required system qual-
ity, not just its functionality

There are really not many projects aim-
ing to deliver totally new products, most
projects aim to improve operating of al-
ready existing solutions. In other words,
quality improvements tend to be the ma-
jor drivers for new projects. So keep in
mind that what the system must do (func-
tions) is important but don’t forget about
the important question on how well the
system should perform (qualities). Focus
on the quality requirements, rather than
the functions as functions can be delivered
quite easy, but to achieve required or ex-
pected level of operating, it is necessary
to plan and develop certain quality char-
acteristics.

These days the way of getting competi-
tive advantage is delivering more useful,
more reliable, more efficient solutions.
Customers search for better products, and
it is important to emphasize that the word
“better” means something else for the cus-
tomer, than for you. Qualities of a system
are important factor that makes the cus-
tomer happy or disappointed when working
with the solution. It has been proven that
quality requirements determine if the cus-
tomer will like your product. You may have
2 products with exactly the same function-
ality but of different usability and the prod-
uct of better usability will be perceived as
a better product, than the second one. In
case of websites, the user decides within
the first 50 milliseconds whether or not
he/she likes a website. Is it about func-
tions? Not at all. You are not able to judge
functions of any website within 50 milli-
seconds, so not the functionality decides
about the user’s perception of the website.
It is something else: pleasant design, aes-
thetics, ergonomic aspects. These are all

non-functional qualities. Let us consider
another example. Imagine a navigation
pane located in an aircraft cockpit. All but-
tons, indicators and major options must
be very clearly marked and immediately
accessible for a pilot. It is also about non-
functional characteristics.

8. Ensure there is ‘rich specification’

Another common problem is that far too
much emphasis is often placed on the
requirement itself. We used to focus on
building and reading the requirement
statement, missing other information al-
lowing to understand the context and real
meaning of the requirement. Usually there
is too little concurrent information about
the whole background describing for ex-
ample, who wants this requirement and
why, what benefits do we expect to get
from the requirement.

When eliciting requirements it is neces-
sary to collect higher level business data
or other background information that pro-
vides the context of the solution. Sample
background information suggested by Tom
Gilb can be:

Owner – who owns the requirement? It •
is especially important in case of con-
flicts or a need to explore details of the
requirement.

Version – the actual version of the re-•
quirement. This information should be
handled as a part of version control
processes.

Stakeholders – who has any (positive •
or negative) interest in implementing
this requirement? This knowledge is
especially useful in requirements elic-
itation (as it indicates who should be

MINIMIZE THE PROJECT RISKI

1/2014 171/20141/2014

asked about the solution) and then, in
requirements analysis, as it supports
conflict management.

Gist (brief description) – short summa-•
ry expressing the most important as-
pects of the requirement.

Ambition – what are we going to •
achieve? In other words, it is a state-
ment of business goals. These goals
should be expressed in measurable
terms in order to allow further verifica-
tion.

Impacts – does the requirement have •
impact on other requirements? What
can affect the requirement? This infor-
mation allows to determine relation-
ships and dependencies between re-
quirements which is a base for further
requirements analysis.

You may say that such information is
nothing but unnecessary bureaucracy as
it does not express the real content of the
requirement. Indeed, it does not describe
the requirement itself but it provides other
information, necessary to understand what
is the meaning and role of the requirement
for the solution considered as a whole.

Background information provides the fol-
lowing benefits:

It helps to judge value of the require-•
ment

It helps to prioritize the requirement •
and determine how important it is for
the solution

It helps to identify and understand risks •
related with the requirement

It helps to update the requirement – •
additional information like impacts or
relations can help to foresee potential
impacts of a change.

It helps to define and maintain the rela-•
tionships between different but related
levels of the requirements – informa-
tion about relationships is usually ex-
pressed by traceability.

It improves the clarity of the require-•
ment – all the additional information
serves to provide more detail about the
context and relationships between re-
quirements.

All the background information can be pro-
vided as part of the requirements specifi-
cation. A sample template of such specifi-
cation can be as follows (Fig. 2).

9. Carry out Specification Quality Con-
trol (SQC)

There is nothing strange or new in stating
that requirements can have bugs. Require-
ments are written by people and humans
can make mistakes. It is the same situ-
ation as in case of defects in the source
code, resulting in product failures. Defects
in the code are found by testing, either
static or dynamic. How to find defects in
requirements? By testing, too. We should
also remember that the later defect is
found, the more it cost. So it is quite obvi-
ous that we should start testing as soon
as possible. Early testing means – testing
requirements.

How to do this? We can check the quality of
requirements against relevant standards;
we can use quality control checklists based
on quality criteria for requirements.

SOFTWARE ENGINEERING

18 1/20141/2014

MINIMIZE THE PROJECT RISKI

REQUIREMENTS SPECIFICATION

Fig. 2. Sample requirements specification template [3]

1/2014 191/20141/2014

A good practice is to apply the rule that
all requirements and specifications should
pass quality control checks before they are
released for use by the next processes.
This way we can minimize the risk of hav-
ing serious problems later, when it appears
that the requirements being basis for the
solution design are ow quality. Testing re-
quirements earlier gives a chance to find
defects and correct them before starting
any implementation works. So – we can
avoid, or at least reduce the amount of re-
working, regression and introducing addi-
tional risks resulting from late changes.

Some statistics indicate that initial quality
control of requirements specification typi-
cally identifies 80 to 200+ words per 300
words of requirement text as ambiguous
or unclear. This research involved checking
against only three quality criteria, which
are:

Unambiguous to readers•
Testable •
No optional designs present•

It is important to understand, that with no
quality control performed, this number of
defects would be passed to later phases of
product developed.

To make quality control of requirements
more complete, we may use checklist cov-
ering the following quality criteria:

Correct – does it accurately describe •
the expected feature?

Feasible – is it possible to implement •
within the estimated budget, time and
limitations?

Necessary – does it document what the •

stakeholders really need?

Prioritized – does it have a priority de-•
fined and do we know how essential the
requirement is?

Unambiguous – can it be interpreted •
only in one way?

Verifiable – is it possible to verify if it is •
implemented correctly?

Singular – does one requirement state-•
ment describe only one requirement?

Design independent – does it describe •
a need, not solution details?

10. Recognize that requirements
change

The last principle says we should be aware
that requirements may change and accept
this fact. Requirements can evolve due to
feedback from stakeholders, or because
of changes resulted from the business. An
example can be a need for change of a
requirement caused by update of law or
other regulation.

When thinking about changes consider
factors from outside the system: politics,
law, regulations, international differences,
economics, and technology and/or busi-
ness change.

Changes can always happen. Business is
changing, new concepts may appear, or
the current concepts are considered not
good anymore. In real projects it is often
not possible to avoid changes, as follow-
ing the plan may lead to project failure in
terms of not meeting its business goals.

SOFTWARE ENGINEERING

20 1/20141/2014

We need to accept the fact that require-
ments may be a subject of change and
there is nothing to stop it. All we can do
with this is to make it easier to manage
changes and reduce risks related to any
modifications. How can we do it? One of
the most important means to support
changeability is implementing traceability
between requirements and other project
artifacts. This will help to analyze the im-
pact of a change and to minimize the risk
of introducing changes so that decisions
about implementing changes can be made
on reasonable basic and real estimates.

So, how to start...

We know the rules of writing good require-
ments. Some of them are not so easy to
apply as it would require changing the
whole mindset of the management, busi-
ness and IT stakeholders; some would
require re-organization of core business
processes related to product development
and even maintaining business strategy.
However, we can start from implementing
the basic rules.

Stakeholders

Let’s start from the stakeholders. Before
you can think about the requirements, you
should ask yourself:

Who will have any interest in the proj-•
ect itself or/and its deliverables?

Who can be affected by realization of •
the project?

Who can limit the capabilities?•

Who will be involved in project works?•

Who will be the management team?•

Who will be the business stakeholders?•

Are there any external bodies which •
can impact the solution?

Are there any regulations or laws re-•
lated to the business area covered by
the project?

To be sure that requirements elicitation is
complete you should know who is involved
in establishing the business goals, scope,
limitations and assumptions. Only then it
is possible to minimize the risk of missing
important information.

Business objectives

When all stakeholders have been identi-
fied, you can start with establishing what
is to be done. It is recommended to start
with determining business objectives what
allows to provide a clear vision of what is
to be accomplished.

Collect and understand business objec-
tives. Understand the context of the or-
ganization, its dependencies and external
and internal relationships with other enti-
ties. When the general high level objec-
tives are already known, decompose them
into smaller, S.M.A.R.T. goals. S.M.A.R.T.
technique allows to define goals which
are:

Specific – a specific goal says precisely •
what should be done.

Measurable – a measurable goal is ex-•
pressed in numerical terms, so that you
will be able to state if it was achieved
or not.

MINIMIZE THE PROJECT RISKI

1/2014 211/20141/2014

Attainable – an attainable goal is real-•
istic and attainable in a given situation.
So don’t establish goals which are not
possible to achieve!

Relevant – establish goals that matter. •
Goals that are relevant to your man-
agement, your team, your organization
will receive that needed support.

Timely (time-bound) – round goals •
within a time frame, give them a target
date. A commitment to a deadline helps
a team focus their efforts on completion
of the goal on or before the due date.

Goal

Intention Specific Measurable Attainable Relevant Timely
What do
you want
to achie-
ve?

Who?
What?
Why?
Where?
When?

How much?
How often?
How many?

Achievab-
le?

Is it im-
portant to
achieve it?

By when?

Increase
sales

The sales
team.
Insurance
products.
In the cen-
tral sales
region.

By 30%. Yes. Yes. By the end
of 2015.

S.M.A.R.T.

The following worksheet helps to establish
and verify S.M.A.R.T. goals (Tab. 2).

Complete business goal statement would
look like:

The sales team should increase sales of
insurance products by 30% by the end of
2015, in the central sales region.

Derive business requirements

When you know the business goals, you
can start with establishing business re-
quirements. Business requirements can be
understood as a further decomposition of
business goals. Each business goal will be

SOFTWARE ENGINEERING

Tab. 2. Establishing S.M.A.R.T. goals.

22 1/20141/2014

EXAMPLE

implemented by several business require-
ments. Remember that the requirements
are not necessary related to any software!
So don’t think in software terms – think in
business terms.

When establishing business requirements,
ensure the owner of each requirement is
allocated and informed about his/her role
for the later activities related to solution
design. When there is a specific person or
group responsible for a requirement, it is
much easier to work on accomplishing it.

It is important to “think business” and do
not focus on software only. In fact, de-
riving business requirements should be
concerned with answering the question:
“what do we need to have to meet busi-
ness goals”.

The requirement statement

Write the statement expressing the re-
quirement. You can use the following
structure of the requirement statement:

The user - who would like this require-•
ment?

The result - what is the result they are •
looking for?

The object - what is the object the re-•
quirement addresses?

The qualifier - what is the qualifier that •
is measurable?

For example:

The insurance agent must have informa-
tion about any new products one day prior
to the product launch.

MINIMIZE THE PROJECT RISKI

Business goal:

Increase incomes from selling insurance products to 50.000 Euro by
the end of 2015.

Requirements allowing to meet the specific goal may be related to:

Improving the efficiency of selling process (for example, by having
up to date information about new products and services)

Opening new selling channels (for example, internet)

Creating a method for monitoring current incomes against the
plan.

Instructing the insurance agents in new processes and products.

1/2014 231/20141/2014

Let’s look at the structure of the business
requirement.

The insurance agent <-- who

must have information about <-- what re-
sult

any new products <-- what object

one day prior to product launch <-- quali-
fier

Remember not to determine the solution
– just state what needs to be achieved.
State WHAT, not HOW. There will be a
proper time for defining the solution. Now
you just want to state what you need.

Traceability

To be sure that all business objectives are
met, link each requirement with appropri-
ate business goal. Use traceability to show

you are performing all necessary steps in
the process – starting from the identifica-
tion of business goals, through business
requirements, to design artifacts. When
decomposing business requirements into
solution requirements, link each solution
requirement with appropriate business
requirement. Remember that business
goals are a kind of acceptance criteria for
a product – they will serve as a basis for
assessment, so you must be sure they are
considered on different levels of solution
development. Traceability allows ensuring
that products of specific level implement
artifacts of the previous level.

Example of traceability between a busi-
ness requirement and solution require-
ments (use cases) is presented on the fig-
ure (Fig. 3).

SOFTWARE ENGINEERING

TRACEABILITY

Fig. 3. Visualization of traceability

24 1/20141/2014

Quality Control

Remember to continuously check quality of
the requirements. Use metrics, check lists
and standards to ensure the requirements
are of good quality. Plan reviews aiming to
verify completeness, correctness and con-
sistency of products of your works.

Summary

As we know the impact of business re-
quirements on the success of any IT proj-
ect cannot be neglected. Poor require-

ments cause problems. Sometimes these
problems lead to failure of the project.
You know what can go wrong, so don’t do
things that are risky. Do what should be
done in order to minimize the risk.

Establish business goals so that you know
what should be done. Link business re-
quirements with goals. State require-
ments in measurable way and ensure they
express stakeholder’s value. Think who
wants what, not how. And don’t forget
about quality control as to minimize the
risk of project failure knowing the current
state of the product is essential.

[1] http://www.cafe-encounter.net/p1183/it-success-and-failure-the-chaos-report-factors

[2] Gilb, Tom. What’s Wrong With Requirements.

[3] Gilb, Tom. Planguage Concept Glossary.

[4] Gilb, Tom. Competitive Engineering: A Handbook for Systems Engineering, Require-

REFERENCES

MINIMIZE THE PROJECT RISKI

Karolina Zmitrowicz

Karolina currently works as independent IT consultant and
trainer in Requirements Engineering and Quality Assurance
fields.

She has a strong experience in the fields of requirements
engineering, project management, quality assurance and
testing. During her career she worked as Project Manager,
QA Manager, Change Manager, Technical Writer, Business
and System Analyst, ISO 9001 Consultant, IT Consultant
and Trainer. She has international experience in banking and
insurance sector: she worked for leading financial organiza-
tions in South Africa, Netherlands, Austria, Slovakia, Italy
and Poland.

She is also an author of several publications in Software En-
gineering area.

AUTHOR

1/2014 251/20141/2014

TESTING

Maciej Chmielarz

Hash verification in regression
testing

INTRODUCTION

In regression testing it is quite common to compare results
obtained with the new version of software to reference results
that were proven to be correct in previous processing. This
task can be challenging when straightforward conformity is
broken by mismatches on non-essential data, like automati-
cally incremented primary keys, current dates etc.

Unfortunately in most of the cases record ids can’t be ig-
nored, because we need to keep track of dependencies be-
tween tables. Resetting them to some initial values doesn’t
always help either. Looking for universal solution to this issue
I thought of replacing keys with values (almost) unequivo-
cally bound to essential content of each record - a hash value
counted upon it.

26 1/20141/2014

HASH VERIFICATION IN REGRESSION TESTING

account
 a_id | name | reg_date | credits
------+-------+------------+---------
 101 | Hewey | 2014-02-12 | 400
 102 | Dewey | 2014-02-12 | 320
 103 | Louie | 2014-02-12 | 100

station
 s_id | loc_name
------+--------------
 201 | Spoke Square
 202 | Chain Street
 203 | Gear Avenue
 204 | Fork Street
 205 | Pedal Square

rental
r_id | a_id | pickup_st | return_st | pickup_ts | return_ts | credits
-----+------+-----------+-----------+---------------------+---------------------+------
301 | 102 | 204 | 201 | 2013-05-15 08:45:12 | 2013-05-15 08:57:35 | 10
302 | 101 | 202 | 205 | 2013-05-15 10:11:56 | 2013-05-15 10:37:08 | 20
303 | 101 | 205 | 201 | 2013-05-15 12:32:24 | 2013-05-15 12:48:10 | 20
304 | 103 | 203 | 202 | 2013-05-15 15:03:21 | 2013-05-15 16:12:38 | 50
305 | 102 | 201 | 204 | 2013-05-15 17:10:43 | 2013-05-15 17:26:23 | 20
306 | 102 | 204 | 201 | 2013-05-16 08:47:21 | 2013-05-16 08:58:05 | 10
307 | 103 | 202 | 205 | 2013-05-16 13:15:00 | 2013-05-16 14:32:00 | 60

RESULT 1

The method

In the proposed method first we deter-
mine a specific hash value for every re-
cord of every table being analyzed. Then
we store those hashes in an auxiliary ta-
ble. Full content of the auxiliary table can
be later used to check conformity, but in
the meantime hashes can also substitute
keys while counting hashes for records in
dependent tables.

Let’s see an example. Assume that in our
sandbox database we process data from
automated bike rental system that re-
quires its customers to buy prepaid cred-
its and holds information about where and
when bikes were picked up and returned.

Input data processed on 2014-02-12 gave
following result (Result 1).

The same input data processed on 2014-
03-02 gave following result (Result 2).

Although both results are formally the
same, simple text comparison shows plen-
ty of differences (you can check that copy-
ing them to any online difference checking
tool). That way it is not easy to determine
the test result. But if we get rid of all ids
and current dates by hashing essential
content, in the simplest case meaning
all except ids and values of current date
fields, what we get is what follows.

For the first processing on 2014-02-12:

1/2014 271/20141/2014

TESTING
RESULT 2

account
 a_id | name | reg_date | credits
------+-------+------------+---------
 101 | Dewey | 2014-03-02 | 320
 102 | Hewey | 2014-03-02 | 400
 103 | Louie | 2014-03-02 | 100

station
 s_id | loc_name
------+--------------
 206 | Chain Street
 207 | Fork Street
 208 | Gear Avenue
 209 | Pedal Square
 210 | Spoke Square

rental
 r_id | a_id | pickup_st | return_st | pickup_ts | return_ts | credits
 -----+------+-----------+-----------+---------------------+---------------------+-----
 308 | 101 | 207 | 210 | 2013-05-15 08:45:12 | 2013-05-15 08:57:35 | 10
 309 | 102 | 206 | 209 | 2013-05-15 10:11:56 | 2013-05-15 10:37:08 | 20
 310 | 102 | 209 | 210 | 2013-05-15 12:32:24 | 2013-05-15 12:48:10 | 20
 311 | 103 | 208 | 206 | 2013-05-15 15:03:21 | 2013-05-15 16:12:38 | 50
 312 | 101 | 210 | 207 | 2013-05-15 17:10:43 | 2013-05-15 17:26:23 | 20
 313 | 101 | 207 | 210 | 2013-05-16 08:47:21 | 2013-05-16 08:58:05 | 10
 314 | 103 | 206 | 209 | 2013-05-16 13:15:00 | 2013-05-16 14:32:00 | 60

hash

 table_name | id | hash

------------+-----+----------------------------------

 account | 101 | acb01b341996fb7715d51b0974c96c3d

 account | 102 | c0254c5d234e28a60b15c606c26d4b35

 account | 103 | fefa7c15b785f0497d79386041429b37

 station | 201 | 2dd15de273dd713a6019831385ef5689

 station | 202 | 6b97b13923f2c153e4e8ded7d229d020

 station | 203 | 8d3d50bdfb72540174e2bdbf23a72466

 station | 204 | f32bceb33574fc9b50c4a5155fbace42

 station | 205 | 66a6722e8c122fea311cb624cc595700

 rental | 301 | 0e13d8c81ad0236872247310ae58b6ba

 rental | 302 | 336169d78681b93c2719deafeb0f9b5e

 rental | 303 | 088c385ae37c35d631771497e7ccd694

 rental | 304 | 70173bd7107ae3cccdb83bb81ee7f488

 rental | 305 | a49ed327ddb847b8bab528ffaa707245

 rental | 306 | f03881be73c11d4b3a5edbe5bac11a75

 rental | 307 | 034130395868e5053339368f7759043c

...and for the second processing on 2014-
03-02:

hash

 table_name | id | hash

------------+-----+----------------------------------

 account | 101 | c0254c5d234e28a60b15c606c26d4b35

 account | 102 | acb01b341996fb7715d51b0974c96c3d

 account | 103 | fefa7c15b785f0497d79386041429b37

 station | 206 | 6b97b13923f2c153e4e8ded7d229d020

 station | 207 | f32bceb33574fc9b50c4a5155fbace42

 station | 208 | 8d3d50bdfb72540174e2bdbf23a72466

 station | 209 | 66a6722e8c122fea311cb624cc595700

 station | 210 | 2dd15de273dd713a6019831385ef5689

 rental | 308 | 0e13d8c81ad0236872247310ae58b6ba

 rental | 309 | 336169d78681b93c2719deafeb0f9b5e

 rental | 310 | 088c385ae37c35d631771497e7ccd694

 rental | 311 | 70173bd7107ae3cccdb83bb81ee7f488

 rental | 312 | a49ed327ddb847b8bab528ffaa707245

28 1/20141/2014

HASH VERIFICATION IN REGRESSION TESTING

insert into hash
select ‚account’ as table_name,
 a_id as id,
 md5(
 coalesce(char(name),’null’) ||
 case
 when reg_date = current_date then ‚current_date’
 else reg_date
 end ||
 coalesce(char(credits),’null’)
) as hash
from account;

insert into hash
select ‚station’ as table_name,
 s_id as id,
 md5(
 coalesce(char(loc_name),’null’)
) as hash
from station;

insert into hash
select ‚rental’ as table_name,
 r_id as id,
 md5(
 -- a_id
 coalesce((select hash from hash
 where id = t.a_id
 and table_name = ‚account’),’null’) ||
 -- pickup_st
 coalesce((select hash from hash
 where id = t.pickup_st
 and table_name = ‚station’),’null’) ||
 -- return_st
 coalesce((select hash from hash
 where id = t.return_st
 and table_name = ‚station’),’null’) ||
 coalesce(char(pickup_ts),’null’) ||
 coalesce(char(return_ts),’null’) ||
 coalesce(char(credits),’null’)
) as hash
from rental as t;

CODE 1

1/2014 291/20141/2014

TESTING

 rental | 313 | f03881be73c11d4b3a5edbe5bac11a75

 rental | 314 | 034130395868e5053339368f7759043c

When we select just table names and
hashes and sort the result in alphabetical
order, we get exact match. That makes us
quite certain that new results match refer-
ence ones. But before we can make use
of benefits brought by this solution, first
we need to run some queries to obtain our
hashes (Code 1).

Let’s take a closer look at some lines taken
from the SQL code.

 coalesce(char(name),’null’) ||

We use char function to convert value
into string, regardless of original column
type, because converting string into string
makes no harm and it is easier to convert
everything than to analyze if we need to

convert or not. Two pipes at the end of the
line mean concatenation with the value in
next line. At the end the whole long con-
catenated string goes as an argument into
MD5 hash function.

We use coalesce function to avoid null val-
ues. We need to check for nulls because
concatenating anything with a null value
results in a null value and all information
is lost. Coalesce takes two arguments and
checks if the first one is null - if it is not,
returns the first argument, if it is, returns
the second argument, which in this case is
the ‘null’ string.

 -- a_id
 coalesce((select hash from hash
 where id = t.a_id
 and table_name =
‘account’),’null’) ||

30 1/20141/2014

HASH VERIFICATION IN REGRESSION TESTING

Maciej Chmielarz

I have been testing software since 2008. I am a tester that
meticulously and relentlessly traces anomalies in softwa-
re development process. Currently I work as a Quality As-
surance Engineer for IVONA Software, an Amazon Company
that developes state of the art text-to-speech solution. Pre-
viously I worked for Asseco Poland on the biggest IT project
in Eastern Europe and I started my career in Gdansk office
of Acxiom Corporation. I am a lecturer and specialization
supervisor at postgraduate studies on software testing at
Gdansk School of Banking. After hours I organize rallies and
other motorsport events.

Contact me: maciej.chmielarz@gmail.com

AUTHOR

Column rental.a_id references account.a_
id and to keep the result independent
from specific key values, before we calcu-
late hashes for records from rental table,
we need to replace rental.a_id with ap-
propriate hash extracted from the auxil-
iary hash table. We add coalesce to avoid
consequences of situation when subselect
doesn’t find what we need and returns
null.

 case
 when reg_date = current_date
then ‘current_date’
 else reg_date
 end ||

Case function lets us check if the value
that we expect to be the current process-
ing date indeed is. If so, then we put ‘cur-
rent_date’ into concatenated string. That
way specific date will not affect the result
when the concatenated string is hashed.

After building up the record consisting of
table name, original record’s identificator
and respective hash value we insert it to
the auxiliary hash table for future reference
and final simplified conformity check.

Summary

Described solution has its disadvantages.
Composing SQL queries does take some
significant amount of time - admittedly
they can be generated based upon the
database schema, nevertheless always
need some manual tuning. That is why
this method works best for systems with
mature and invariable schema. Besides
we need to be aware that we check solely
the data that is being queried. But those
drawbacks are no different than in case of
other automated methods.

1/2014 311/20141/2014

EVENTS

32 1/20141/2014

TestingCup

EVENTS

The idea

The idea of massive competing was unique
as of that day. This is the story about the
group of enthusiasts who converted the
simple concept into the most important
testing event in Poland.

The idea of organising Testing Cup started
in Poland as early as 2011. Radek Smilgin
became the originator and the main orga-
nizer of the idea. A few volunteers cooper-
ated with him in this project. The begin-

nings were difficult, the aim was far away
but every new day and every new team
member took the championship to a new
level. The result of their work were first
Polish Championships in Software Test-
ing – TestingCup. The event took place
on 23th September 2013, at The National
Stadium in the capital of Poland, Warsaw,
the stadium where the Euro 2012 matches
were played.

Łukasz Gałuszka
Stefania Winkel

1/2014 331/20141/2014

TESTINGCUP

However, coming back to the beginnings,
as the team was scattered across Poland,
the organisation meetings ran online to the
late night hours. There was a lot of work
to do, starting from setting up the rules of
the event, through searching for sponsors,
to finally writing and testing an applica-
tion intended for tests on the champion-
ships – Mr Buggy. Additionally, to rise the
work pleasure over the project and get to
know each other better the team members
were meeting in Katowice or Wrocław. The
friendly relationships developed better co-
operation during the event.

The application created – Mr Buggy is a
type of tool known by all testers – defects
tracking tool. The role of the team was
to create this application and to seed the
incidents in it, which had to be found by
participants. Only a few people hadseen
and tested Mr Buggy before the Testing-
Cup day. Most of them were nominated to
the TestingCup Committee.

Realization

The preparations at the stadium started
at 5 a.m. on the day of the competition.
120 computers for all participants had to
be set, run and checked. The sounds of
the starting operating systems accompa-
nied us for half an hour. The event began
according to the timeline, the reception
worked ideally and with positive attitude.
The registered participants and the spec-
tators who came to see the work of the
potential masters chose the comfortable
places and went for coffee. The subject of
the application was quite surprising for the
participants. They knew they should be
looking for bugs in the software but they
did not know any details about the applica-

tion usage. The competition task sounded:
“Please, find and report defects, using the
provided documentation, in the Mr Buggy
application which is used to… incidents re-
porting”. The participants reaction was ob-
vious – smiles appeared on their faces.

After the official beginning, the volunteers
helped to resolve all problems related to
hardware. The spectators were able to
see the participants as well as to take part
in the lectures prepared by the eminent
specialists in the field of testing and qual-
ity management in IT projects. The main
speaker was David Evans who talked about
agile testing.

The task for the participants was to find as
many bugs as possible basing on the pro-
vided specification and report them in the
text file. There was an additional challenge
for testers – “what kind of information is
important in the incident report, what is
worth of reporting and what is a waste of
time?”. Some of them managed the task
perfectly. They created reports which con-
tained all the necessary information need-
ed to the reproduction of the defect by the
TestingCup Committee. The others, unfor-
tunately lost valuable points for the qual-
ity of the report – not everyone can be a
champion. :)

Punctually at 5 p.m., after 4 hours of
heated debates, the TestingCup Commit-
tee chose winners. The results were an-
nounced solemnly and the awards were
given to the first Polish champions in test-
ing in individual and team categories.

34 1/20141/2014

Evaluation and plans

The event was rated very positively by
Polish testers community. A lot of partici-
pants could face software testing process
first time. The places for competition sold
out at once – in 15 minutes! Organisers
themselves were surprised by such a big
interest.

The second edition of the cup is taking
place at the beginning of June 2014. As a
result of the experience gained in the first
edition, some changes have been planned
in some aspects. The event will last two
days, we expect more participants – 200
testers and 100 spectators, bigger work-

space was rented on the National Stadium
and greater emphasis has been placed
on the testers community integration. All
that for the main purpose of the cham-
pionship which is software testing promo-
tion. More speakers will participate in this
year’s edition. The main speaker will be
Paul Gerrard, a great authority in the field
of testing, author of many books, adviser
and tutor. He will talk about testing values.
The second speaker will be James Lyndsay
who will talk about exploratory testing.

For more details about the event, please
visit the official website:
www.testingcup.com.

EVENTS

Stefania Winkel

Stefania Winkel is a graduate from Wroclaw University of
Technology, Faculty of Electronics. She has been part of in-
ternational software testing project since 2010. She has got
The ISTQB Certified Tester Full CTAL.

Started with manual testing, designing test strategy, till test
management – where there’s a will there’s a way. Her pas-
sion is a test promotion. She is a trainer preparing testers
for ISTQB exam and a volunteer in Polish Championship in
Software Testing “TestingCup”.

AUTHORS

Łukasz Gałuszka

Łukasz Gałuszka is a tester and test manager with a 10-
year-experience within the branch. He works in the compa-
ny which produces software for organizations delivering so-
lutions for telecommunications network providers. He tested
computer applications, mobile phones, elements of telecom-
munications networks as much as programmers’ patience.

An accredited ISTQB Foundation Level trainer. A volunteer
and a member of the TestingCup Committee since the first
edition.

1/2014 351/20141/2014

Publisher
VWT Polska Michał Kruszewski
Przy Lasku 8 lok. 52, 01-424 Warszawa
Number NIP 5272137158
Number REGON 142455963

Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl
Piotr Poznański
piotr.poznanski@quale.pl

WWW
www.qualemagazine.com
www.quale.pl

Facebook
http://www.facebook.com/qualemagazine

Advertisement
info@quale.pl

Cooperation
If you are interested in cooperating with us,
please send us a message:
info@quale.pl

Magazine All trade marks published are property of the
proper companies.

Copyright:
All papers published are part of the copyright
of the respective author or enterprise. It is
prohibited to rerelease, copy or modify the
contents of this paper without their written
agreement.

The following graphics have been used:

Cover

black_hole_space_outer_space
http://images.all-free-download.com/ima-
ges/graphiclarge/black_hole_space_outer_
space_216348.jpg

MAGAZINE

