
1

TestingCup 2015

Q
ua

le
 3

/2
01

4

The testers and coding debate:
Can we move on now?

Paul Gerrard

Competitive Planning
Chapter 1 - Objectives

Test automation patterns
Seretta Gamba

 Dorothy Graham

Tom Gilb

2 3/20143/2014

6 th & 7 th November 2014 in Nuremberg

Test Organisation
State of the Art

imbus AG, Kleinseebacher Str. 9, 91096 Möhrendorf, GERMANY,
Phone +49 9131 7518-0, Fax +49 9131 7518-50, qs-tag@imbus.de

©
 D

m
itr

y
Ve

re
sh

ch
ag

in
 -

 F
ot

ol
ia

.c
om

Software

2014

www.qs-tag.de/english

®Ranorex

GA ecaFretnI
the face of informatics

Exhibitors:Supported by:

5 Tracks to the power of 10 Slots =

 9.765.625 combination options

for your very own Software-QS-Tag Register
now!

www.qs-tag.de

3/2014 33/20143/2014

Content

EDITORSHIP
Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl

Cooperation:
Tomasz Olszewski
tomasz.olszewski@quale.pl

Website:
www.qualemagazine.com (ENG)
www.quale.pl (PL)

Facebook:
http://www.facebook.com/qualemagazine

5. Music in Testing: Top of the Pops
Bartłomiej Prędki

7. Music in Testing: Let there be Rock!
Krzysztof Chytła

DIFFERENT POINT OF VIEW

9. Test automation patterns
Seretta Gamba, Dorothy Graham

18. The testers and coding debate: Can we move on now?
Paul Gerrard

SOFTWARE TESTING

25. Competitive Planning. Chapter 1 - Objectives
Tom Gilb

40. An overview of the SQuBOK® - Software Quality Body of
Knowledge - and its benefits in the context of global collabo-
rations for software quality
Susumu Sasabe

SOFTWARE ENGINEERING

4 3/20143/2014

3/2014 53/20143/2014

DIFFERENT POINT OF VIEW

Music in Testing:
Top of the Pops

Bartłomiej Pręski

“Stop, summertime!” [MC Hammer – U
can’t touch this]. Welcome my Dear Fel-
low. As you know, summer is the time of a
beautiful weather, relaxing sound of waves,
mojito and naked wom… well… I mean…
and mojito. It is an obvious fact that one
of the products – except for drinks – that
are good sellers during summer is music
– specifically one of its genres. Of course,
there’s nothing that fits the atmosphere of
the summer better than Pop.

Recently, sitting on one of the beach-
es somewhere in the southern Europe, I
came to the conclusion that, in principle,
our profession perfectly resonates with the
vibes of that music. Basically, when get-
ting up in the morning with the perspec-
tive of the immemorial struggle with de-
velopers, analysts and management, the
only thing you could say is “sometimes I
feel I’m gonna break down and cry” [Fred-
die Mercury – Living on My Own]. And the
leitmotiv of the day is Staying Alive [Bee
Gees].

In fact – as you remember we’ve been re-
cently discussing about joy and torment of

testing – it’s not that bad. Huge part of
work-related communication can be done
with use of Pop music. For example, after
finding a critical bug, we can call the Dev
Lead singing, “I just call to say…”[Stevie
Wonder - I just call to say I love you]. No
one deserves our love more than develop-
ers creating crappy code – thanks to them
we have our jobs! Notwithstanding, it
would be better of us when the person on
the other side of the phone didn’t ask, how
much we loved them – we would be sim-
ply forced to answer “truly, madly, deeply”
[Savage Garden - Truly Madly Deeply] with
our fingers crossed behind our back.

It’s getting much worse when we have to
leave your comfort zone and go to develop-
ers in person – the world doesn’t seem to
be too perfect when we enter their section
muttering “As I walk through the valley of
the shadow of death…” [Coolio – Gangsta’s
Paradise]. Remeber, you can easily knock
them off balance by saying with a hushed
voice „Every fix you make, I’ll be watching
you” [The Police – Every Breath You take].
And just to make your message stronger,
you can show them the famous eyes-fin-

6 3/20143/2014

gers gesture, just like Robert De Niro in
Meet the Fockers. Oh, wait, it should be
Pop, not Hollywood…

One of my favourite areas of testing is re-
quirements analysis. It is widely known,
that - in a perfect world – the testing pro-
cess should begin in a very early phase of
the project. When poring over documen-
tation, I would often like to ask the author
“Tell me why…”. Moreover, this phase can
be heavily affected by project managers,
who force their last-minute corrections
in : “Yes, I know, it’s too late, but I want
it that way” [BackStreet Boys - I Want It
That Way].

Now, let me wrap up the testing process.
We all know, that at the end of the project,
it’s required to prepare The Testing Report.
In my mind I see the faces of the project
manager, the customer and management
representatives who read about the ter-
rible quality of the product. Yes, those are
the same guys who stinted money on test-
ing. The further they wade in the report
exposing their incompetence, the more
they want to say “Don’t tell me ‘cause it

hurts” [No Doubt – Don’t Speak]. Some
people like to learn things the hard way.

Of course, apart from the purely testing
activities, there are some brighter parts of
our profession, especially, when we take
part in recruitment events like job fairs.
For example, when speaking with a female
internship candidate who is so “young and
sweet, only seventeen” [ABBA – Dancing
Queen], you convince yourself that the
world is not such a bad place, in fact, it
has a pretty face too. And in the evening,
having the sense of a job well done, we
can return home, dancing like John Tra-
volta in “Saturday Night Fever”. And later,
when looking in the mirror with an imp-
ish smile, you can sing to yourself like Rod
Steward – Do Ya Think I’m Sexy? Let the
exploratory testing begin!

As you see – my Dear Friend – Pop music
is like testing and testing is like Pop music.
Although, I’m deeply convinced that you
have a different view on this topic…

P.S. Of course my favourite music band is
Crash Test Dummies ;)

TOP OF THE POPS

Bartłomiej Prędki

I’ve started my professional experience in 2004 as a tester of mass-
market mobile applications. Within next years I gained an experience
in Testing and Quality Assurance areas, mostly focused on Telecom-
munications industry.

During my career I was involved in testing, managing testing proc-
esses, training, technical support, requirement analysis, recruitment,
technical documentation creation and review. Besides my mobile and
telecommunications experience, I was also involved in financial and
banking systems related projects. Currently I possess the role of QA
Team Lead.

I’m a holder of two ISTQB Advanced certificates: Technical Test Ana-
lyst and Test Manager

I live and work in Wroclaw, Poland.

AUTHOR

3/2014 73/20143/2014

DIFFERENT POINT OF VIEW

Music in Testing:
Let there be Rock!

Krzysztof Chytła

Hallowed be thy name Bartek [Iron Maid-
en]! I’m both happy and concerned for you.
Is everything all right? Mojito drinks, sandy
beaches and women in négligé must have
driven you crazy like Britney in her prime,
but Pop? Come on man, give me a break!
What happened to good old sex, drugs and
– above all – rock’n’roll? What can I say…
de gustibus non est disputandum.
Our profession is like Pop? Whoa, brother,
that’s preposterous. Did you come to this
conclusion under the influence of some-
thing funny? Or is it lack of vaccination?
Yeah, that certainly must have been the
latter; or a mild sunstroke. Please let me
help you realize how wrong you are. There
is still hope. Read through and see the
doctor immediately.

It’s common knowledge that testing is like
Rock. How come? That’s simple. Here’s an
insider’s look on the testing process: tune
up here, turn down there, adjust param-
eters, fix the input and check the output.
Rings any bells? Wire things up, use Mac-

Gyver tape, follow safety procedures, ver-
ify functional (vocal) section, validate re-
gression (percussion) section, then launch
- isn’t it the test environment setup? I’m
not sure about you, but I can definitely hear
the buzz of the amps before the Test Lead
starts his exploratory (guitar) solo. All is
set and done, we’re back together, on the
road, it’s time to fly [Manowar – Return of
the Warlord]. Then suddenly, bam! A bug
pops up, jumps like an electric spark from
one component to another [Van Halen -
Jump], and you know, that “you’ve been
missing that one final screw” [Queen – I’m
going slightly mad].

I’ll go one step further down the valley of
the shadow of death and say that testing
is like Heavy Metal. Why? Business de-
mands products to be tested, tested by
the best. When the testing’s over, all the
metrics done, we were born to win – num-
ber one! [Manowar – Number One]. Heavy
duty testing assures unrivaled quality.

8 3/20143/2014

LET THERE BE ROCK!

I hope that you’ve understood your grave
mistake by now, but wait, there’s even
more!.

Starting your day like a wimp? I could ex-
pect that from a junior apprentice at the
Tower of Testing Arts but not from you, a
battle-hardened veteran supposed to lead
not whine. Unbelievable. Is there a guard-
ian of the blind (at the cost of poor qual-
ity) still dwelling in you? Remember last
time you had spoken the words of met-
rics? Precisely, “then there was silence”
and awe [Blind Guardian]. Never forget
“that flame, that burns inside of you, hear
the secret harmonies” [Queen – A kind of
magic]. That test – it is a kind of magic!

Now you’re talking! Crack you fingers like
and get down to the business whistling
“die, die, die my darling” [The Misfits] to
the system under test that’s been waiting
for you your whole holiday (a freelancer
with flexible work ethics would probably
add a jar of whisky to that test harness).
Thou shall not be afraid of face-to-face
confrontation too as you know “for whom
the bell tolls” [Metallica] when the force of
regression result is with you.

Analyzing requirements in the early stage
of a project is truly like playing with mad-
ness [Iron Maiden – Can I play with mad-
ness] based on some crystal ball insights.
They’re like hell – never freeze. Sounds like
a nightmare. So, who you gonna call [Ray
Parker Jr - Ghostbusters]? A Bugbuster! A
true tester will “face it with a grin, is never
giving in” [Queen – The show must go on]
even, if it’s a one way ticket to hell [The
Darkness – One way ticket to hell]!

Testing – my love – is like a rock far out
in the sea with waves of false pretens-
es crushing into it [Masterplan – Love is
a Rock]. Quality’s been through worse,
it shall prevail. Summarizing, if love is a
rock and testing is (my) love, then there is
nothing else left but to conclude that test-
ing is like Rock \m/ my Friend.

PS.
Watch out for those dancing seventeens.
Things might not be as you believe they
are (unless you test). Imagine yourself
caught in flagrante by her daddy scream-
ing, “Hey?! What’s this supposed to be?
She’s only sixteen!” [Manowar - Warlord].

Krzysztof Chytla

Test manager, designer and automation specialist with we-
alth of experience in embedded systems domain. Participa-
ted in big international projects assuring the highest product
quality. Flesh and blood tester curiously analyzing rapidly
expanding world of new technologies.

Author of translations and publications. Wroclaw University
of Technology, Faculty of Electronics graduate. Trainer and
coach passionate about acquiring and sharing knowledge.

On a personal note big fan of fantasy, science fiction and
board games accopanied by a a glass of single malt whisky
- an editor’s best friend.

AUTHOR

3/2014 93/20143/2014

SOFTWARE TESTING

Seretta Gamba
 Dorothy Graham

Test Automation Patterns

Patterns and Test Automation

The “Mother of all Software Pattern Books”
Design Patterns [DP] was published in 1995
by the so called Gang of Four (GoF). The
book is more than a collection of design
patterns for the development of object-
oriented applications, it describes what
patterns are for (how they help solve de-
sign problems) and how to select and use
them. The book has had at least as much
influence on software development as the
Agile Manifesto [AM], that permanently
changed the way software is written.

Many other books on patterns followed
(see References), but they have been
mainly written for software developers;
even testing patterns have only been pub-
lished for Unit-Tests. As of now (2014) tes-
ters have not profited from them.

For Test Automation Patterns it all be-
gan when Dorothy Graham asked Seretta
Gamba to contribute a chapter to her new
book “Experiences of Test Automation”

[ETA]. When the book finally appeared
(2012), Seretta was really curious to read
what the other collaborators had written.
Some of the best features in the book are
the “Good Point”, “Lesson” or “Tip” notes
that the authors included to emphasize
especially interesting topics. Already af-
ter reading the first few chapters Seretta
noticed that some notes were coming up
again and again. A bell rang: PATTERN!
PATTERN! PATTERN!

Seretta was well acquainted with patterns
since she worked at least half of her time
as a developer, but when she had her test
automation hat on, it never occurred to
her to look for patterns. She used them
unconsciously, just as apparently all the
other contributors to the book also had
done.

After realizing this, Seretta immediately
searched the Internet for a book about test
automation patterns…and found only ref-

10 3/20143/2014

TEST AUTOMATION PATTERNS

erences to Unit-Test Automation, nothing
else! She decided on the spot to write the
missing book herself. She asked Dorothy
Graham if she would be interested in doing
it with her. Dorothy didn’t completely turn
her down at first, but promised to review
it. After working for about 8 months, Ser-
etta sent the first draft to Dorothy and the
review was really enthusiastic. The collab-
oration between Dorothy and Seretta had
begun and the original book has long since
been transformed into a wiki.

Test Automation Patterns

In the context of test automation, a pat-
tern can be either a description of how
some testware has to be in order to solve
some test automation problem, a rule
about how to perform a particular step in
a test automation process, or a sugges-
tion about how to resolve a management
issue. In other words a pattern is expert
knowledge proven by repeated experienc-
es. A pattern shows the way to help solve
some test automation issue.

Patterns do not exist in a void: each is
a solution to an issue that occurs under
some particular conditions or context. Also
patterns are often associated with other
patterns either because they can only be
implemented using other patterns or be-
cause they can only be applied after other
patterns have been put into practice. As
an example think about the pattern “car”:
can you really believe that we could use
this “pattern” so successfully if we hadn’t
also implemented the patterns “paved
road” and “gas station”?

The relationship to other patterns forms
the “grammar” of a pattern language. Just
as in English you cannot write the parts of

a sentence in a gratuitous sequence, but
you must follow some rules, so also with
test automation patterns you have to fol-
low their natural hierarchy.

Lastly a pattern is not:

a finished solution that you can just •
“plug in” directly to your situation
prescriptive (you must do this)•
a step-by-step procedure (do this first, •
then that)

We have classified the patterns into four
categories:

Process Patterns: how the test automa-•
tion process should be set up or how it
can be improved.
Management Patterns: how to manage •
test automation both as an autono-
mous project or integrated in the de-
velopment process
Design Patterns: how to design the test •
automation testware so that it will be
efficient and easy to maintain
Execution Patterns: how to ensure that •
test execution is easy and reliable.

To be able to recognize one when we are
talking about a pattern we write it in capi-
tal letters (PATTERN).

We describe for each pattern the contexts
in which it can be applied, the actual rec-
ommendations and how to implement
it, eventually suggesting other patterns.
When known, we have added examples on
how it has been applied. The mind map
(Figure 1) gives an overview of the pat-
terns we have collected as of July 2014.

3/2014 113/20143/2014

SOFTWARE TESTING

Test Automation Issues

Since only a recognized problem can be
solved efficiently, in order to be able to
use the patterns as solutions we must first
describe the issues that testers have to
face when they tackle test automation. We
have deliberately chosen to call any type
of test automation problem an issue. This
is because issues can not only be prob-
lems like high maintenance costs but also
simply tasks that have to be done as when
you start test automation from scratch or
you have to select a new tool or team.

Test automation issues are manifold. Some
are technical in nature, such as inefficient
failure analysis or brittle scripts. However,
one of the main reasons for failure is to
concentrate exclusively on the technical
aspects. Other issues are related to the
way you work, such as late test case de-
sign, or when automation seems to get off
to a good start, but then grinds to a halt.
Others are management issues, such as
high ROI expectations. Some issues may
arise due to both technical and manage-

PATTERNS

Fig. 1. Test Automation Patterns

12 3/20143/2014

ment problems.

We have classified the issues into four cat-
egories:

Process Issues: the way we work with •
automated tests and tools
Management Issues: issues of manage-•
ment, staffing, objectives
Design Issues: testware architecture, •
including maintainability
Execution Issues: the running of tests •
in their automated form

To be able to recognize one when we are
talking about an issue we write it in italic
capital letters (ISSUE).

We describe every issue with examples in
different contexts and then give sugges-
tions as to which patterns to apply in or-

der to solve it. The mind map (Figure 2)
gives an overview of the issues we have
collected as of July 2014.

How to work with issues and pat-
terns

Let’s see with a short example how issues
and patterns work together. Let’s start
with an issue that many automators have
had to tackle and show how it leads to the
patterns that help solve it.

We will look at the issue BRITTLE SCRIPTS
and the pattern MAINTAINABLE TES-
TWARE.

In the issue examples we list some pos-
sible occurrences of the issue (eventu-
ally we want to have examples in differ-

TEST AUTOMATION PATTERNS
ISSUES

Fig. 2. Test Automation Issues

3/2014 133/20143/2014

SOFTWARE TESTING
BRITTLE SCRIPTS

Issue Summary
Automation scripts have to be reworked for any small change
to the Software Under Test (SUT)

Category
Design

Examples
Scripts are created using the capture functionality of an au-
tomation tool. If in the meantime something has been chan-
ged in the application, the tests will break unless recorded
anew

Questions
How do you develop automation scripts?

Resolving Patterns
Most recommended:

DATA-DRIVEN-TESTING: this is the pattern to implement •
if up to now you have only used capture / replay. The
constant values captured by recording the tests are sub-
stituted with variables that are read from external files.
The rework effort due to changes in the SUT will be re-
duced since the scripts can be reused for any number of
tests.
KEYWORD-DRIVEN-TESTING: This pattern involves more •
development effort than DATA-DRIVEN TESTING, but is
much more efficient on the long run. Using keywords to
drive the tests enables you to write test cases that are
practically independent from the SUT. If the SUT changes,
the functionality behind the keyword must be adapted,
but most of the time the test cases themselves are still
valid
MAINTAINABLE TESTWARE: This is the pattern to apply •
if you want to get rid of the issue once and for all. If you
haven’t implemented it yet, you may want to apply at le-
ast some aspects of this pattern.
MANAGEMENT SUPPORT: This is the pattern to apply if •
you are missing support or resources that you need in
order to develop MAINTAINABLE TESTWARE

Other useful patterns:

GOOD PROGRAMMING PRACTICES: This pattern should •
already be in use! If not, you should apply it for all new
automation efforts. Apply it also every time you have to
change current testware.

14 3/20143/2014

TEST AUTOMATION PATTERNS
MAINTAINABLE TESTWARE

Pattern Summary
Design your testware so that it does not
have to be updated for every little change
in the Software under Test (SUT).

Category
Design

Context
This pattern is applicable when your auto-
mated tests will be around for a long time,
and/or when there are frequent changes
to the SUT.
This pattern is not applicable for one-off or
disposable scripts

Description
Identify the most costly and/or most fre-
quent maintenance changes, and de-
sign your automation to cope with those
changes with the least effort. When ad-
justments really are necessary, then they
should be relatively easy to implement.
For example, if objects are frequently re-
named, construct a translation table from
the name you want to use in the tests, and
put in whatever the name of the object is
for the current release of the SUT (OBJECT
MAP).

Implementation

Some suggestions:
There are many options to make and •
keep the testware maintainable, but to
adopt a GOOD DEVELOPMENT PROCESS
and GOOD PROGRAMMING PRACTICES
is a very good bet: what works for sof-
tware developers works for test auto-
mation just as well!

For example, if your scripts are ma-•
inly „stand-alone” without much re-
use, and automators are frequently
re-inventing similar or even duplica-
ted scripts or automated functions,
then GOOD PROGRAMMING PRACTI-
CES are needed, particularly DESIGN
FOR REUSE and OBJECT MAP.

Implement DOMAIN-DRIVEN TESTING: •
test automation works best as coope-
ration between testers and automation
engineers. The testers know the SUT,
but are not necessarily adept in the
test automation tools. The automation
engineers know their tools and scripts,
but probably wouldn’t know how to test
the SUT. If the testers can develop a
domain specific language for themsel-
ves to use to write the automated test
cases, the automation engineers can
implement the tool support for it. In
this way they will each be doing exactly
what they do best. The advantage for
the automation engineers is that in this
way the testers will maintain the tests
themselves leaving the engineers more
time to refine the automation regime.
For example, if you have structured and •
reusable scripts, but there is a shorta-
ge of test automators to produce the
automated tests (or they are short of
time), this pattern gives the test-wri-
ting back to the testers, once the au-
tomators have constructed the infra-
structure for the domain-based test
construction. Other useful patterns are
ABSTRACTION LEVELS and KEYWORD-
DRIVEN TESTING.

Potential problems
Don’t leave it too late to build maintaina-
ble testware - this is best thought of right
at the beginning of an automation effort.
(Although it is also never to late to begin
improvements.)

Issues addressed by this pattern
BRITTLE SCRIPTS•
DATA CREEP•
HIGH ROI EXPECTATIONS•
NO PREVIOUS TEST AUTOMATION•
OBSCURE TESTS •
SCRIPT CREEP•

3/2014 153/20143/2014

ent contexts). Some questions should also
help you recognize if the issue is actually
the one that you have to tackle.

Finally we recommend a number of pat-
terns and give also hints to other useful
ones.

Since the patterns are in alphabetical or-
der it’s not important which one you ex-
amine first. We have tried to give both the
patterns and the issues sensible names so
that you can kind of guess their contents
just by reading the name.

For our example let’s take a look at MAIN-
TAINABLE TESTWARE.

For every pattern we give the context
where it can be applied successfully or
where it wouldn’t be worth the trouble to
invest in it.

SOFTWARE TESTING

In the description we outline what the pat-
tern recommends and then give one or
more suggestions about how to implement
it. We also give a short list of problems that
could arise when applying the pattern.

Finally you should be able to find the issue
from which you started in the list of the is-
sues addressed by the pattern.

When you decide that the pattern you are
examining is not the one you need, you
just go back to the original issue and ex-
amine the next one.

On the other hand, if more than one pat-
tern would be useful, then just start im-
plementing one. That done, you can get
back to the other one(s).

16 3/20143/2014

What is also important to notice here is
that in order to implement this pattern you
need to implement some other patterns
first (i.e. OBJECT MAP, GOOD DEVELOP-
MENT PROCESS, GOOD PROGRAMMING
PRACTICES, DESIGN FOR REUSE, DO-
MAIN-DRIVEN TESTING, ABSTRACTION
LEVELS and KEYWORD-DRIVEN TESTING).
Some of them will probably also need oth-
er patterns to be implemented before they
themselves can be applied. It can get quite
complex as you can see in the mind map
(Figure 3).

Here again, how do you know where to
start? Well, since the recommended pat-
terns should all be implemented, you could
start anywhere, but we suggest that you go
first with the easiest ones, the ones where
you will get improvements fast. Once you
can show that your automation is getting
better, it will be easier to convince people
(especially management) to support you
when tackling more complex tasks.

In this example you could start for in-
stance with GOOD PROGRAMMING PRAC-
TICES / SET STANDARDS. Note that SET
STANDARDS is also recommended by
GOOD DEVELOPMENT PROCESS so apply-
ing it would start you off for both patterns
(GOOD PROGRAMMING PRACTICES and
GOOD DEVELOPMENT PROCESS).

TEST AUTOMATION PATTERNS
TESTWARE

Fig. 3. Maintainable Testware

3/2014 173/20143/2014

SOFTWARE TESTING

AUTHORS

Seretta Gamba

Seretta Gamba has over 30 years’ experience in software devel-
opment. As test manager at Steria Mummert ISS GmbH she was
charged in 2001 with the improvement of the test automation proc-
ess. After studying the current strategies, she developed a kind of
keyword-driven testing and a framework to support it. In 2009 the
framework was extended to support also manual testing. Seretta re-
ferred about it at EuroSTAR and got the attention of Dorothy Gra-
ham that subsequently invited her to contribute with a chapter in her
new book (Experiences of Test Automation). On reading her bonus
book Seretta noticed recurring patterns in the solution of automation
problems. After gaining Dorothy’s support, she is currently intent on
cataloguing Test Automation Patterns.

Dorothy Graham

Dorothy Graham has been in software testing for 40 years, and is co-
author of 4 books: Software Inspection, Software Test Automation,
Foundations of Software Testing and Experiences of Test Automa-
tion. She has been on the boards of conferences and publications in
software testing, was a founder member of the ISEB Software Test-
ing Board and was a member of the working party that developed the
ISTQB Foundation Syllabus. She was awarded the European Excel-
lence Award in Software Testing in 1999 and the first ISTQB Excel-
lence Award in 2012. She is currently working on the Test Automation
Patterns wiki with Seretta Gamba.

Conclusion

So what issues are giving you problems in
your test automation? Would you like to
have some ideas for how to address them?
We hope that the issues and patterns that
we are putting in our wiki will help you to
do better system-level test automation.

Have you experienced one or more of
these issues and/or patterns? If so, we
would like to hear from you, or have you

write up a few sentences about your expe-
rience inside the relevant issue or pattern.
Viewing is open to all; to write to the wiki,
just ask to be invited, and we will be hap-
py to see your comments. We also have
a discussion page for general comments,
disagreements, etc.

TestAutomationPatterns.wikispaces.com.

18 3/20143/2014

SOFTWARE TESTING

Paul Gerrard

The testers and coding debate:
Can we move on now?

Should Testers Learn How to Write
Code?

The debate on whether testers should
learn how to write code has ebbed and
flowed. There have been many blogs on
the subject both recent and not so recent.
I have selected the ten most prominent
examples and listed them below. I could
have chosen twenty or more. I encourage
you to read references [1, 2, 3, 4, 5, 6, 7,
8, 9, 10].

At the BCS SIGIST in London on the 5th
December 2013, a panel discussion was
staged on the topic “Should software tes-
ters be able to code?” The panellists were:
Stuart Reid, Alan Richardson, Dot Graham
and myself. Dot recorded the session and
has very kindly transcribed the text of the
debate. I have edited my contributions to
make more sense than I appear to have
made ‘live’. (I don’t know if the other con-
tributors will refine their content and a
useful record will emerge). Alan Richard-

son has captured some pre- and post-ses-
sion thoughts here – “SIGIST 2013 Panel
– Should testers be able to code? [11]. I
have used some sections of the comments
I made at the session in this article.

It’s easy to find thoughtful comments on
the subject of testers and coding skills.
But why are smart people still writing
about the subject? Hasn’t this issue been
resolved yet? There’s a certain amount of
hand-wringing and polarisation in the dis-
cussion. For example, one argument goes,
if you learn how to code, then either:

a) You are not, by definition, a tester
anymore; you are a programmer and
b) By learning how to code, you may
go native, lose your independence and be-
come a less effective tester.

Another perfectly reasonable view is that
you can be a very effective tester without
knowing how to code if your perspective is

3/2014 193/20143/2014

THE TESTERS AND CODING DEBATE: CAN WE MOVE ON NOW?

black-box or functional testing only.

I’d like to explore in this article how I think
the situation is obviously not black-and-
white. It’s what you do, not what you know,
that frames your role but also that adding
one skill to your skills-set does not reduce
the value of another. I’d like to move away
from the ‘should I, shouldn’t I’ debate and
explore how you might acquire capabilities
that are more useful for you personally or
your team – if your team need those ca-
pabilities.

The demand for coding skills is driven by
the demand for capabilities in your proj-
ect. In a separate article I’ll be proposing
a ‘road-map’ for tester capabilities that re-
quire varying programming kills.

My Contribution to the ‘Debate’

Before we go any further, let me make a
few position statements derived from the
Q&A of the SIGIST debate. By the way,
when the SiGIST audience were asked, it
appeared that more than half confirmed
that they had programming skills/experi-
ence.

Software testers should know about
software, but don’t usually need to be
an expert

Business acceptance testers need to know
something of the business that the system
under test will support. A system tester
needs to know something about systems,
and systems thinking. Software testers
ought to know something about software,
shouldn’t they? Should a tester know how
to write code? If they are looking at code
figuring ways to test it, then probably. And

if they need to write code of their own or
they are in day to day contact with devel-
opers helping them to test their code then
technical skills are required. But what a
tester needs to know depends on the con-
versations they need to have with devel-
opers.

Code comprehension (reading, under-
standing code) might be all that is required
to take part in a technical discussion. Some
programming skills, but not necessarily
at a ‘professional programmer level’, are
required to create unit tests, services or
GUI test automation, test data generation,
output scanning, searching and filtering
and so on. The level of skill required var-
ies with the task in hand.

New skills only add, they can’t sub-
tract

There is some resistance to learning a pro-
gramming language from some testers.
But having skills can’t do you any harm.
Having them is better than not having
them; new skills only add, they don’t sub-
tract.

Should testers be compelled to learn
coding skills?

Most of us live in free countries, so if your
employer insists and you refuse, then you
can find a job elsewhere. But is it reason-
able to compel people to learn new skills?
It seems to me that if your employer de-
cides to adopt new working practices,
you can resist the change on the basis of
principle or conscience or whatever, but
if your company wishes to embed code-
savvy testers in the development teams it
really is their call. You can either be part of
that change or not. If you have the skills,

20 3/20143/2014

THE TESTERS AND CODING DEBATE: CAN WE MOVE ON NOW?

you become more useful in your team and
more flexible too of course.

How easy is it to learn to code? When
is the best time to learn?

Having any useful skill earlier is better than
later of course, but there’s no reason why
a dyed-in-the-wool non-techy can’t learn
how to code. I suppose it’s harder to learn
anything new the older you are, but if you
have an open mind, like problem-solving,
precise thinking, are a bit of a pedant and
have patience – it’s just a matter of moti-
vation.

However, there are people who simply do
not like programming or find it too hard or
uncomfortable to think the way a program-
mer needs to think. Some just don’t have
the patience to work this way. It doesn’t
suit everyone. The goal is not usually to
become a full time programmer, so may-
be you have to persist. But ultimately, it’s
your call whether you take this path.

How competent at coding should tes-
ters be?

My thesis is that all testers could benefit
from some programming knowledge, but
you don’t need to be as ‘good’ a program-
mer as a professional developer in order
to add value. It depends of course, but
if you have to deal with developers and
their code, it must be helpful to be able
to read and understand their code. Code
comprehension is a less ambitious goal
than programming. The level of skill var-
ies with the task in hand. There is a range
of technical capabilities that testers are
being asked for these days, but these do
not usually require you to be professional
programmer.

Does knowing how to code make you
a better tester?

I would like to turn that around and say, is
it a bad thing to know how to write code
if you’re a tester? I can’t see a downside.
Now you could argue: if you learn to write
code, then you’re infected with the same
disease that the programmers have – they
are blind to their own mistakes. But tes-
ters are blind to their own mistakes too.
This is a human failing not unique to de-
velopers of course.

Let’s take a different perspective: If you
are exploring some feature, then having
some level of code knowledge could help
you to think more deeply about the pos-
sible modes (the risks) of failure in soft-
ware and there’s value in that. You might
make the same assumptions, and be blind
to some assumptions that the developer
made, but you are also more likely to build
better mental models and create more in-
sightful tests.

Are we not losing the tester as a kind
of proxy of the user?

If you push a tester to be more like a pro-
grammer, won’t they then think like a pro-
grammer, making the same assumptions,
and stop thinking of or like the end user?

Dot Graham suggested at the SiGIST
event, “The reason to separate them (tes-
ters) was to get an independent view, to
find the things that other people missed.
One of the presentations at EuroSTAR
(2013) was a guy from an agile team who
found that all of the testers had ‘gone na-
tive’ and were no longer finding bugs im-
portant to users. They had to find a way to
get independence back.”

3/2014 213/20143/2014

SOFTWARE TESTING

On the other hand, by separating the
testers, the team lose much of the rapid
feedback which is probably more impor-
tant than ‘independence’. Independence is
important, but you don’t need to be in a
separate team (with a bureaucratic pro-
cess) to have an independent mind – which
is what really matters. The independence,
wherever the tester is based, is their in-
dependent mind whether it’s at the end
or working with the developer before they
write the code.

There is a Homer Simpson quote [12]:
“How is education supposed to make me
feel smarter? Besides, every time I learn
something new, it pushes some old stuff
out of my brain. Remember when I took
that home winemaking course, and I for-
got how to drive?”

I don’t think that if you learn how to code,
you lose your perspective as a subject
matter expert or experience as a real user,
although I suppose there is a risk of that if
you are a cartoon character. There is a risk
of going native if, for example, you are a
tester embedded with developers. By the
same token, there is a risk that by being
separated from developers you don’t treat
them as members of the same team, you
think of them as incompetent, as the ene-
my. A professional attitude and awareness
of biases are the best defences here.

Why did we ever separate testers from
developers? Suppose that today, your tes-
ters were embedded and you had to make
a case that the testers should be extracted
into a separated team. I’m not sure the
case for ‘independence’ is so easily made
because siloed teams are being discredit-
ed and discouraged in most organisations
nowadays.

What is this shift-left thing?

There seem to be a growing number of
companies who are reducing their depen-
dency on scripted testing. The dependen-
cy on exploratory testers and of testers
‘shifting left’ is increasing.

Right now, a lot of companies are pushing
forward with shift-left, Behaviour-Driven
Development, Acceptance Test-Driven De-
velopment or Test-Driven Development. In
all cases, someone needs to articulate the
examples – the checks – that drive these
processes. Who will write them, if not the
tester? With ATDD, BDD approaches, com-
munication is supported with stories, and
these stories are used to generate auto-
mated checks using tools.

Companies are looking to embed testers
into development teams to give the de-
velopers a jump start to do a better job
(of development and testing). An emerg-
ing pattern is that companies are saying,
“The way we’ll go Agile is to adopt TDD or
BDD, and get our developers to do better
testing. Obviously, the developers need
some testing support, so we’ll need to em-
bed some of our system testers in those
teams. These testers need to get more
technical.”

One goal is to reduce the number of func-
tional system testers. There is a move to
do this – not driven by testers – but by
development managers and accountants.
Testers who can’t do anything but script
tests, follow scripts and log incidents – the
plain old functional testers – are being off-
shored, outsourced, or squeezed out com-
pletely and the shift-left approach sup-
ports that goal.

22 3/20143/2014

THE TESTERS AND CODING DEBATE: CAN WE MOVE ON NOW?

How many testers are doing BDD,
ATDD or TDD?

About a third of the SIGIST audience (of
around 80) raised their hands when asked
this. That seems to be the pattern at the
moment. Some companies practicing these
approaches have never had dedicated in-
dependent testers so the proportion of
companies adopting these practices may
be higher.

Shouldn’t developers test their own code?
Glen Myers’ book [12] makes the state-
ment, “A programmer should avoid at-
tempting to test his or her own program”.
We may have depended on that ‘principle’
too strongly, and built an industry on it,
it seems. There are far too many testers
who do bureaucratic paperwork shuffling
– writing stuff down, creating scripts that
are inaccurate and out of date, process-
ing incidents that add little value etc. The
industry is somewhat bloated and budget-
holders see them as an easy target for
savings. Shift-left is a reassessment and
realignment of responsibility for testing.

Developers can and must test their own
code. But that is not ALL the testing that
is done, of course.

Do testers need to re-skill?

Having technical skills means that you can
become a more sophisticated tester. We
have an opportunity, on the technical side,
working more closely – pairing even – with
developers. (Although we should also look
further upstream for opportunities to work
more closely with business analysts).

Testers have much to offer to their teams.
We know that siloed teams don’t work very

well and Agile has reminded us that col-
laboration and rapid feedback drive prog-
ress in software teams. But who provides
this feedback? Mostly the testers. We have
the right skills and they are in demand.
So although the door might be closing on
‘plain old functional testers’ the window is
open and opportunities emerging to do re-
ally exciting things. We need to be willing
to take a chance.

We’re talking about testers learning
to code but what about developers
learning to test better? Should orga-
nizations look at this?

Alan Richardson: We need to look at real-
ity and listen to people on the ground. De-
velopers can test better, business analysts
can test better – the entire process can
be improved. We’re discussing testers be-
cause this is a testing conference. I don’t
know if other conferences are discussing
these things, but developers are certainly
getting better at testing, although they
argue about different ways of doing it. I
would encourage you to read some of the
modern development books like “Grow-
ing Object-Oriented Software Guided by
Tests” [14] or Kent Beck [15]. That’s how
developers are starting to think about test-
ing, and this has important lessons for us
as well.

There is no question that testers need to
understand how test-driven approaches
(BDD, TDD in particular) are changing the
way developers think about testing. The
test strategy for a system and testers in
general must take account (and advan-
tage) of these approaches.

3/2014 233/20143/2014

SOFTWARE TESTING

Summary

In this article, I have suggested that:

Tester programming skills are helpful in •
some situations and having those skills
would make a tester more productive
It doesn’t make sense to mandate •
these skills unless your organization is
moving to a new way of working, e.g.
shift-left
Tester programming skills rarely need •
to be as comprehensive as a profes-
sional programmer’s
A tester-programming training syllabus •
should map to required capabilities and
include code-design and automated
checking methods.

We should move on from the ‘debate’ and
start thinking more seriously about appro-
priate development approaches for testers
who need and want more technical capa-
bilities.

AUTHOR

Paul Gerrard

Paul Gerrard is a consultant, teacher, author, webmaster, developer,
tester, conference speaker, rowing coach and a publisher. He has
conducted consulting assignments in all aspects of software testing
and quality assurance, specialising in test assurance. He has pre-
sented keynote talks and tutorials at testing conferences across Eu-
rope, the USA, Australia, South Africa and occasionally won awards
for them.

Educated at the universities of Oxford and Imperial College London,
in 2010, Paul won the Eurostar European Testing excellence Award.
In 2012, with Susan Windsor, Paul recently co-authored “The Busi-
ness Story Pocketbook”.

He is Principal of Gerrard Consulting Limited and is the host of the
UK Test Management Forum and the UK Business Analysis Forum.

Mail: paul@gerrardconsulting.com
Twitter: @paul_gerrard
Web: gerrardconsulting.com

24 3/20143/2014

THE TESTERS AND CODING DEBATE: CAN WE MOVE ON NOW?

REFERENCES

[1] Do Testers Have to Write Code?, Elizabeth Hendrickson, http://
testobsessed.com/2010/10/testers-code/

[2] Cem Kaner, comments on blog above http://testobsessed.
com/2010/10/testers-code/comment-page-1/#comment-716

[3] Alister Scott, Do software testers need technical skills?, http://wa-
tirmelon.com/2013/02/23/do-software-testers-need-technical-skills/

[4] Markus Gartner, Learn how to program in 21 days or so, http://
www.associationforsoftwaretesting.org/2014/01/23/learn-how-to-pro-
gram-in-21-days-or-so/

[5] Schmuel Gerson, Should/Need Testers know how to Program,
http://testing.gershon.info/201003/testers-know-how-to-program/

[6] Alan Page, Tear Down the Wall, http://angryweasel.com/
blog/?p=624, Exploring Testing and Programming, http://angryweasel.
com/blog/?p=613,

[7] Alessandra Moreira, Should Testers Learn to Code? http://road-
lesstested.com/2013/02/11/the-controversy-of-becoming-a-tester-deve-
loper/

[8] Rob Lambert, Tester’s need to learn to code, http://thesocialtester.
co.uk/testers-need-to-learn-to-code/

[9] Rahul Verma, Should the Testers Learn Programming?, http://
www.testingperspective.com/?p=46

[10] Michael Bolton, At least three good reasons for testers to learn
how to program, http://www.developsense.com/blog/2011/09/at-least-
three-good-reasons-for-testers-to-learn-to-program/

[11] Alan Richardson, SIGIST 2013 Panel - Should Testers Be Able to
Code, http://blog.eviltester.com/2013/12/sigist-2013-panel-should-te-
sters-be.html

[12] 50 Funniest Homer Simpson Quotes, http://www.2spare.com/
item_61333.aspx

[13] Glenford J Myers, The Art of Software Testing

[14] Steve Freeman and Nat Pryce , Growing Object-Oriented Software
Guided by Tests, http://www.growing-object-oriented-software.com/

[15] Kent Beck, Test-Driven Development by Example

[16] A Survey of Literature on the Teaching of Introductory Program-
ming, Arnold Pears et al., http://www.seas.upenn.edu/~eas285/Re-
adings/Pears_SurveyTeachingIntroProgramming.pdf

3/2014 253/20143/2014

SOFTWARE ENGINEERING

Tom Gilb

Competitive Planning

All critical objectives can be
quantified, and must be

An objective is a valued future perfor-
mance level, usually an improvement over
the current state.

The fact that we can use words like ‘en-
hanced, improved, better’ to describe our
interests, is a clear sign that these objec-
tives are variable in nature, and that they
can be represented by numbers.

There are two primary steps to quantifica-
tion. First a Scale of Measure needs to be
defined. Then interesting levels (like Past,

Goal, Tolerable) of that quantified scale,
need to be specified.

There are three basic categories of perfor-
mance objectives: work capacity, savings,
and qualities. Most management needs
little instruction in quantified specification
of the first two of these. But usually needs
considerable help in dealing with the other
side of the unbalanced scorecard, quali-
ties. Qualities describe ‘how well’ a system
(organization, process, project, product,
service) performs.

Chapter 1 - Objectives

‘Objectives’ are the plans we have for what we want to achieve,
independently of which ‘strategies’ (‘means’) we might later sele-

ct, to achieve them.

26 3/20143/2014

COMPETITIVE PLANNING - OBJECTIVES
EXAMPLE

Fig 1. Clear quantified objectives

Responsiveness:

Scale: Hours needed for defined People to Correctly Respond to defi-
ned Situations.
Goal: within 24 Hours:

When = End Next Year, People = Director Level, Correctly = Legally •
& Without Complaint, Respond = Take Action resolving Situation.

We have found no exceptions; all objec-
tives can be quantified.

All word-only objectives, like ‘world class
quality’, or ‘enhanced responsiveness to
market dynamics’ will be unclear to the
originator, and will have quite different in-
terpretations to all who read or hear them.
They are a total waste of time.

Use the simple basic format, in this ex-
ample (Figure 1).

Policy 1.1: ‘Clear Quantified Ob-
jectives’ Policy

All critical planning objectives will be ex-
pressed with defined Scales of Measure
and Numeric Levels.

Why ?
Force ourselves to think deeply and •
clearly
No management bullshit •
Taking responsibility •
Clarifying limits to responsibility•

1.2 HANDSFUL: It is sufficient to
promote up to ten critical
objectives, at any given level of
responsibility

There are far more than 10 things we
would all like to improve. But if we try to
identify and work on 100 or more things at
the same time, we will likely lose focus on
the more-critical things. We believe and
practice that any given level of responsi-
bility (project manager, CTO, IT Architect
- for example) should consciously limit
themselves to a handful of the most criti-
cal objectives, initially. When these are ac-
complished, or at least safely delegated to
others, and on their way to being reached:
then it is time to turn to the next set of
priorities.

The initial way we do this is in a meet-
ing of people who we need to get to agree
what is important. We ask them to list the
names of the most critical objectives, and
to decide what the top 10, maximum, are.
This is about 1 hour of meeting time usu-
ally, and it is not too difficult to get pretty
good agreement.

Naming the objectives is just the first
stage of definition. An it is unreasonable to
expect serious commitment to these until

3/2014 273/20143/2014

SOFTWARE ENGINEERING

they have been so well defined, quanti-
fied, that people know exactly what they
have agreed to prioritize. That process can
take the rest of the day, of hard parallel
work. Three people working on 3 of the
objectives, and 3 or 4 teams collating their
definitions by the end of the day. But that
process works well, and we use it in our
‘Evo’ Startup Planning Week, process. We
achieve the top ten quantified, on a single

EXAMPLE

Fig. 2. Very simplified presentation of top 10 quantified objectives for a client project. The
necessary ‘Scales of Measure’ (see 1.1 above) are not included here, but are implied as
defined.

page - if we edit it that way, in the first day
of work on a project.

Bill, a banking VP from New York, asked his
boss in London, Barney, the main objec-
tive for the startup planning week. Barney
replied: “I’d be really overjoyed if for the
first time in this Bank’s history we man-
aged to quantify, and thus clarify, the pri-
mary objectives of our large IT projects.”

28 3/20143/2014

COMPETITIVE PLANNING - OBJECTIVES

Bill privately decided to spend an extra
day, with Kai, making sure the quantified
objectives were top notch, for his boss.
While we started work on the top 10 strat-
egies in parallel, on Tuesday.

POLICY 1.2 Top-Ten Critical Ob-
jectives Policy

The first day of any project or major ef-
fort, will decide, for the moment, on the
top 10 most critical objectives: and quan-
tify them on a single page, for responsible
management approval.

Why?
Because all other effort (strategies, es-•
timates) is logically impossible without
this clear basis to work from.

What if we need to change the top ten?

Do that, when and as you need to. But •
do not use inevitable changes and in-
sights as an excuse for initially fuzzy
objectives.

1.3 SUPPORT SUPERIORS: Your lev-
el of objectives must clearly
support the level above you

Ralph Keeney proposed an excellent prac-
tical idea to sort out your responsibility,
from your bosses, and your support team’s
responsibilities. Your objectives (‘strate-
gic’) must clearly support the achievement
of the next level of objectives above you
(your bosses objectives, ‘fundamental’).

Any objectives that presume to support
your strategic objectives, your subordi-
nates, or support teams, are called ‘means
objectives.

EXAMPLE

Fig 3. Strategic objectives

Contract Flexibility:

Type: Project level Critical Objective.
Owner: Project Manager
Supports: CTO Objectives, especially Technical Adaptability.
Scale: The Speed which a Contract can be Changed at minimum cost
of loss to reflect Circumstances.
Goal: < 1 month

Contract: All IT Services and IT Products •
Changed: Deleted or modified •
Circumstances: changed economics, or failure to live up to expec-•
tations
Deadline: This Year •

Supporting Strategies:
FlexiCon: www.FlexibleContracts.com •

Supporting Objectives:
Legal Dept: % of Flexible Contracts in Force. •

3/2014 293/20143/2014

SOFTWARE ENGINEERING

Policy 1.3: Responsibility Clarifi-
cation

Written specification, immediately tied to
objectives, shall clarify the level of respon-
sibility (for formulation, changes and re-
sult delivery), as well as what it supports
(explicitly defined) and what supports it
(explicitly defined).

Why? •
Nobody should be in doubt about their
responsibility and its limitations, People
should not confuse ends (priority) with
means (far less priority).

1.4 LOYAL SUBORDINATION: All
your subordinate’s objectives
must clearly support your objec-
tives

We typically have many and varied sourc-
es of support for reaching our own objec-
tives. Direct subordinates, contractors,
consultants etc. Let us call any instance
that helps you to reach your own objec-
tives, your ‘support team’.

You will agree that clarity of responsibility,
about how they support your objectives, is
necessary. This has some implications.

If they do not know exactly what your •
objectives are, they cannot support you
very effectively
If you change, even some details of your •
objectives: they should be informed, so
they can change their support corre-
spondingly
If you choose to hide your objectives, or •
to formulate them unclearly: then you
are responsible for your support team’s
lack of ability to serve your interests.

If you choose to tell them ‘what’ to do •
(the means to your objective), rather
than the smarter option ‘how well to
do it’ (in terms of your objectives); you
bear responsibility for that choice, so
be conscious of it. Normally, let them
figure out ’how’!

However, once you have made your ob-
jective excruciatingly clear, your support
team can and should be held accountable,
in various ways:

They should agree, or clearly disagree, •
that they will support reaching some of
your goals, to some degree
They should be able to show a credi-•
ble (numeric, experiential, guaranteed)
relationship between their activity and
plans, and their hope of helping you
reach your strategic objectives.
They should be able to show measur-•
able numeric progress, at least using
leading indicators, that their plans are
working in practice
They should expect credibility and re-•
wards, based, not on what they have
done – with good intent – but what they
have delivered of your values
Outside contractors should be prepared •
to put their money where their mouth
is, and base payment on your results,
not just their effort.

Policy 1.4: Relevant Support Pol-
icy

Any element of support for your objec-
tives, should:

directly show an estimated relationship •
to your specific numeric objectives
be prepared to adjust when your objec-•
tives are adjusted

30 3/20143/2014

COMPETITIVE PLANNING - OBJECTIVES

be evaluated on cost effectiveness and •
timeliness in helping you reach your
objectives

Why?
So we know what to expect, and who is •
responsible.

1.5 MEANS TO ENDS: All other
plans, by whatever names, must
support achievement of your
goals, on time

Here is a list of ‘all other plans, by what-
ever names’:

All plans for subcontractors and consul-•
tants paid from your budget
All contracts, and agreements •
All sub-projects and their plans •
All strategic plans •
All meetings, training •
All recruitment, and downsizing in your •
sphere

We should be able to ask: what is the ex-
pected impact on our objectives and our
budgets.

If the answer is ‘nothing’ but we need to
do it anyway, then let the reason be known
(legal, compliance, image, corporate poli-
cy) – and accept a degree of it.

If there is any claim to making a contri-
bution to your objectives, then the hard
questions can begin [12 Tough Questions].
The objective of the questions is to make
both parties think about what they are ex-
pecting, and if it is realistic, or risky.

Policy 1.5: Confront Assumptions
Policy

Use clear simple, confrontational, ques-
tions to find out which activities are really
supporting your objectives seriously.

Why?
To send a message that you are serious •
about your objectives
To motivate your support team to think •
better and more purposefully
To provide a better set of facts and as-•
sumptions to support a contracting pro-
cess

1.6 MEASURE REALITY: All objec-
tives with a defined Scale, can
and must have sufficient mea-
surement methods, to give
knowledge of current levels.

“In physical science the first essential step
in the direction of learning any subject is
to find principles of numerical reckoning
and practicable methods for measuring
some quality connected with it.

I often say that when you can measure
what you are speaking about, and express
it in numbers, you know something about
it; but when you cannot measure it, when
you cannot express it in numbers, your
knowledge is of a meagre and unsatis-
factory kind; it may be the beginning of
knowledge, but you have scarcely in your
thoughts advanced to the state of Science,
whatever the matter may be.”

Lord Kelvin, 1893, Lecture to the Institu-
tion of Civil Engineers, 3 May 1883

3/2014 313/20143/2014

SOFTWARE ENGINEERING
THE 12 TOUGH QUESTIONS

THE 12 TOUGH QUESTIONS

1. NUMBERS
Why isn’t the improvement quantified?

2. RISK
What’s the risk or uncertainty and why?

3. DOUBT
Are you sure? If not, Why not?

4. SOURCE
Where did you get that from? How can I check it out?

5. IMPACT
How does your idea affect my goals?

6. ALL CRITICAL FACTORS
Did we forget anything critical?

7. EVIDENCE
How do you know it works that way?

8. ENOUGH
Have we got a complete solution?

9. PROFITABILITY FIRST
Are we going to do the profitable things first?

10. COMMITMENT
Who’s Responsible?

11. PROOF
How can we be sure the plan is working?

12. NO CURE
Is it no cure, no pay?

32 3/20143/2014

COMPETITIVE PLANNING - OBJECTIVES

Many people mix up or combine the con-
cepts of ‘quantification’ and ‘measure-
ment’. They typically use the lazy excuse,
that ‘perfect measurement’ is too difficult,
in order to avoid doing ‘quantification’.

Illogical!

There is of course a clear enough distinc-
tion between a budget and accounting, be-
tween a volt and a voltmeter. But people
consistently mix up the concepts, to their
disadvantage. So did we, for a while.

Notice Kelvin, in the quote above (which
determined the direction of our profes-
sional work since about 1965). In a single
sentence, Lord Kelvin distinguishes be-
tween quantification and measurement
twice, and three times in the quotation!
This is not by accident.

Quantification alone has great merit, even
if you never actually carry out any mea-
surement! A budgeting process makes you
think about what can and might happen:
even though the actual accounting data
might be very different. The budgeting
process gives you some constraints you
have to respect when real measurement
threatens to cause problems. The same
distinction holds for forming a scientific or
engineering hypothesis, and consequent
experimentation to determine it is proven
or not. Quantification is, above all, a use-
ful tool in communication between people.
Numbers clarify, what words hide and con-
fuse. Having recognized that quantifica-
tion (in practice, defining a scale of mea-
sure, and some interesting points on that
scale) alone is useful; we also know that
it is usually also useful, sooner or later,
to actually observe reality numerically: to
measure in practice. This gives essential

contact with the real world. If measure-
ment is early and frequent, then we can
usually adjust our plans, to be in better
contact with reality, and with our objec-
tives and constraints.

Measurement does not have to be ‘per-
fect’. In fact it cannot be literally perfect,
as engineers and scientists clearly ac-
knowledge. Kelvin was not fanatic, as you
can read. So the question is:

What exactly is sufficient measurement •
quality (accuracy, precision, credibil-
ity), and what is the lowest cost mea-
surement process, that has satisfactory
quality.
At different stages in the system devel-•
opment process, for different purposes,
we can decide to have quite different-
measurement processes.
The choice of measurement process, •
since it depends on many scalar dimen-
sions, is really an ‘engineering design’
decision.

Here is a simple example showing the dis-
tinction, and the choice of more than one
measuring tool, for a single scale (Figure
4.).

Policy 1.6: Plan Measurement For-
mally, and integrated in planning
of objectives

Formal written plans, to measure in prac-
tice, will be integrated with the specifica-
tion of objectives.

Why?
It makes us consider when we want to •
measure, and consider different levels
of measurement capability, and their

3/2014 333/20143/2014

SOFTWARE ENGINEERING
EXAMPLE

Fig. 4. Using scales

Team Cooperation Capability:

Type: CTO Level Organizational Improvement Objective
Ambition: much better and consistent cooperation between team
members and between teams in technical projects.
Scale: average % of Project Hours spent with Cooperative Content be-
tween Team Components.

Meter [Early Stages of a Project] samples of logged hours, by Project •
Manager, monthly, 1 hour of work.
Meter [Analysis of Completed Projects] Database analysis using stu-•
dent trainees, presenting reports and conclusions.

Goal [within 2 years] < 20%-40%

Project Hours: as logged in project logs, and charged against a pro-•
ject.
Cooperative Content: writing or oral activity directed to others, with •
purpose of sharing and/or getting feedback.
Team Components: Any people within a Team communicating with •
each other. Any part of a team communicating outside the project
team, with the purpose of learning or sharing.

costs.
It will help avoid excessive measure-•
ment.

How?
The ‘Meter’ parameter can be used for •
specification of different types of mea-
suring processes.

1.7 CONCEPTUAL COMPLEXITY:
Some objectives are complex,
have multiple dimensions, and
thus multiple scales describing
them.

“Love is a many-splendored thing”, the
old song says. But height and weight have
but one dimension [10, Quality Quantifica-
tion].

One problem you will have encountered in
trying to clarify, or to quantify, objectives,
is that there might be no one satisfactory
dimension of measurement. There are in
fact several you can think of. Which one is
the right one? It is tempting to ask. All of
them andmore might be the right answer!
An old electrical handbook recommended
dividing up concepts ‘until quantification
became obvious’.

Rene Descartes (1596-1650) recommend-
ed the same approach (Discourses on the
Methods):

To accept nothing as true which is not
clearly recognise to be so: that is to say,
carefully to avoid precipitation and preju-
dice in judgments, and to accept in them
nothing more than what was presented to

34 3/20143/2014

COMPETITIVE PLANNING - OBJECTIVES

my mind so clearly and distinctly that I
could have not have no occasion to doubt
it. To divide up each of the difficulties
which I examined into as many parts as
possible, and as seemed requisite in order
that it might be resolved in the best man-
ner possible.

To carry on my reflections in due order,
commencing with objects that were the
most simple and easy to understand, in
order to rise little bylittle, or by degrees,
to knowledge of the most complex, as-
suming an order, even if a fictitious one,
among those which do not follow a natural
sequence relatively to one another. In all
cases to make enumerations so complete-
ly and reviews so general that I should be
certain of having omitted nothing.

Once the CEO at IBM decided that Usabil-
ity was the wave of the future, for the new
Personal Computers, and Tom was asked
to help out by IBM.

Tom suggested quantification of Usability,
but it took months before we realized that
this was many dimensions, not one. The
many dimensional model was adopted by
IBM.

A client of ours, asked us to analyze a
large failed project (8 years, $160 million,
90 project team members). The CEO had
initiated the project to radically improve
the ‘robustness’ of a major product. It was
failing too often and too long for major
customers.

Their original requirement, which went
without being taken seriously, for 8 years,
was:

“Rock Solid Robustness” (official speci-
fication headline)

There was some further specification about
not breaking down too often (2 weeks),
and being fixed quickly (10 minutes).
Combined with a long list of strategies for
achieving this.

Tom’s suggestion looked more like this:

Rock Solid Robustness:
Type: Complex Product Quality Require-
ment.
Includes:

{Software Downtime,
 Restore Speed,
 Testability,
 Fault Prevention Capability,
 Fault Isolation Capability,
 Fault Analysis Capability,
 Hardware Debugging Capability}.

The first 3 were then quantified in less than
an hour. They should have all been quanti-
fied, and used to drive the project, 8 years
earlier. Gradual improvements should have
been delivered to the quantified goals in
the first months of the project.

Policy 1.7: DECOMPOSE COM-
PLEX OBJECTIVES

Critical top level objectives shall be de-
composed into their elementary quantified
components, when this will give better
management of the top level objective.

Why ?
Because this gives more realistic un-•
derstanding and consequent treatment
of essential aspects of the problem.
It forces people to think more deeply •
It eases the path to quantified manage-•
able objectives

3/2014 353/20143/2014

SOFTWARE ENGINEERING

1.8 REFLECT REALITY RAPIDLY:
Changing specification of objec-
tives, is a natural and necessary
response to insights, feedback,
competition, and politics

Just because an objective is written, or it
is quantified, does not mean it is ‘chiseled
in stone’. In fact one reason for writing
things down, is to clearly see any changes
later. A reason for quantification is to more
clearly realize that a numeric change has
been made, however small.

Our policy must be that changes will be
clearly understood. Even the smallest
changes can have large consequences. It
is therefore important to be able to sense
changes, and take appropriate action
quickly.

In one published case study (AT&T, 5ESS
system, Communications of ACM) the pri-
mary factor was a change in switching sys-
tem availability from 99.90% to 99.98%.
Only 00.08% change in one factor. But the
cost was 8 years time, and between 2 to
3,000 people were involved. So, imagine
the consequences if you are not numeric

EXAMPLE

Fig. 5. Specificaiton of objectives

Market Adaptability:

Type: Marketing Director Critical Objective.
Stakeholders: Marketing Director, CTO, Product Director, Sales Direc-
tor.
Owner: Chief Marketing Planner
Expert: Supply Chain Manager
Version: 17 July 20xx, 12:31
Quality Control: last approved 10 June 20xx
Scale: …..
Goal: …..

(“highest availability”) or do not have the
4th digit?

We believe in a number of tactics when
planning, to make discrete change clearer.
We believe it should ne specified at the de-
tailed level (the objective) not the ‘total
plan’ (where the fact of changes can easily
get lost.

We would specify, using some of the ideas
on Figure 5.

The Stakeholder list makes us aware of the
main players concerned with any changes.
They can be informed, and they can review
and approve. The Owner is the specifica-
tion owner for this objective. Nobody else
can make an official change, and the Own-
er is responsible for doing it responsibly;
for example by informing stakeholders.
The owner might also consult with the do-
main Expert, before publishing a change.

36 3/20143/2014

COMPETITIVE PLANNING - OBJECTIVES

Version control, for example using a date,
time stamp or version number helps sen-
sitize readers to changes in the specifica-
tion. And a QC date and status reminds us
that QC is or is not done.
Not all of this detail has to surface every
time you quote or use an objective. But it
belongs in the planning database, if your
plans are to be taken seriously; and if your
need to reflect change quickly could other-
wise cause confusion.

One underlying principle implied, and be-
hind all this, that we strongly recommend,
is that there be allowed only a single valid
version, call it a Master Specification, of
any given objective or strategy; to which
all related planning must refer. Anything
less will descend quickly into chaos and
anarchy.

Policy 1.8. Change plans quickly,
but responsibly

Serious planning objectives will include
information allowing us to change details
rapidly, but safely; so that all affected par-
ties are made aware of the changes.

Why?
Anything less that this and you will con-•
tinue with obsolete plans, and out of
sync decision making; not highly com-
petitive.

1.9 RICH REALITY: A single objec-
tive can be specified in any use-
ful number of dimensions of time,
space, and events.

It can be dangerous to have a single num-
ber to represent your objective.

If you do, then it is, unfortunately, logical-
ly necessary, to have the biggest number
covering all your needs, forever under all
circumstances.
That is a bad idea!

We practice differentiation (like ‘market
segmentation’) of targets (what we are
aiming to achieve), and constraints (worst
acceptable levels). The simple reason for
this differentiation is that we can plan
more competitively by clearly separating
high-value short-term situations from the
‘other 95%’, and delivering value quickly.
For example, instead of just specifying

Goal: 20%

We would set different goals for specif-
ic segments of time, environment (who,
where), and events. Technically we call
these ‘qualifiers’ of the goal level.

Something like:

Goal [Deadline = 1st Release, Market =
China, Consumer = Golfer, Assumption =
Tax Free Import] 20%

Which can also be written:

Goal: 20%

Deadline = 1st Release
Market = China
Consumer = Golfer
Assumption = Tax Free Import

The statement

[Deadline = 1st Release, Market = China, Consumer
= Golfer, Assumption = Tax Free Import]

is a ‘qualifier’.

3/2014 373/20143/2014

SOFTWARE ENGINEERING

It contains three types of qualifier. When,
What, and If’ .

There can be any useful number of these.
In particular the ‘What’ dimension often
has 3 to 6 more-detailed dimensions in
practice. The ‘If dimension’ is not always
used. But it is almost illogical NOT to use
the ‘When’ dimension: since that would al-
low fulfilling the objective in infinite time.
Time constraints have a powerful influ-
ence on our chosen means for satisfying
our objectives.

Of course you can, at any time in the plan-
ning process, have as many different Goal
statements, with as many different quali-
fiers, as you need. You can plan for any set
of long-range, medium-range and short-
range levels for the objective as you need,
when you feel the need.

The planning detail can emerge in paral-
lel with the value-delivery process of your
project. Detailed statements can emerge,
as you get feedback from real-life delivery;
learning about new markets and stake-
holders, that are worth catering for.

We usually, predetermine some of the pa-
rameters, but not necessarily all of them,
in the ‘Scale’ definition. So we could for
example have used the Scale specifica-
tion, with ‘Scale Parameters’: like:

Scale: average annual % of our Corpo-
rate Unit Sales for a Market, and a Con-
sumer.

This suggests that we can define any use-
ful combination of Market and Consumer
in the target (Goal) and constraint (Toler-
able) specifications; as well as in Bench-
mark (Past).

Policy 1.9. The Smart Differentia-
tion Policy

Specify objectives by detailing clear ideas
of when, who, what and ‘If’, so as to maxi-
mize our short-term and longer range
competitiveness.

Why?
To avoid delays to urgent selected •
stakeholders
To slice up doable short term action •
To force ourselves to think more clear-•
ly, and in more detail about our impor-
tant stakeholders, and what they really
need, and how fast it is worth getting
the value delivered to them.

1.10 BUTTERFLY: The slightest nu-
meric or other change in an ob-
jective, can trigger surprisingly
large consequences, in neces-
sary strategies and their costs.

So, be careful what you ask for you might
not need it or be able to afford it.

If the state of the art for uptimes of a
(software) system is 99.998 %, what will
it cost you to demand the best, a competi-
tive edge, say 99.999% ? Just 00.001%
better ?

First, nobody knows! There is only one
way to find out. Do it.

As all real engineers know, 100% is not
possible in finite , for a known cost. They
never seriously plan for perfection. Pre-
cisely in highly competitive situations, you
are pushing the border, the record. And
nobody knows, until it is done.

38 3/20143/2014

COMPETITIVE PLANNING - OBJECTIVES

EXAMPLE

Fig 6. Benchmarks

Customer Service Availability:

Scale: % of 24/7 a customer gets a qualified answer without
waiting or failing.
Past [Last Year, Our Main Service System] 95% <- Service report
Record [Last Year, Our best competitor] 98% <- Their PR
Record [Worldwide, Last 10 years, Similar Customer Service
Systems to Ours] 99.98% <- Industry Surveys
Trend [by Next Year, Based on Last 5 years, Our Main Service
System] 93% ?
Trend [Next Year, Our best competitor] 99% ??

Based on these benchmarks – what is a reasonable plan?

Tolerable [by Next Year, Our Main Service System] 99% ? <- Mkt
Dir.
Goal [by Next Year, Our Main Service System] 99.5% <- CTO

As we pointed out above (AT&T case),
the answer can be shocking (24,000 work
years of effort 99.90% to 99.98% avail-
ability, and this can only be satisfactory,
for extremely deep pockets. Management
cannot simply, seriously demand ‘24/7’.

So in our planning language, we have
ways of giving ourselves warnings, and of
understanding why we have chosen par-
ticular levels of an objective, as our Goals
or Tolerable levels. We call these devices
‘Benchmarks’ (Fig. 6.).

Considering the example on Figure 6 -
do the benchmarks (Past, Record, Trend)
explain and drive us to the levels of the
objectives we have suggested? How does
Goal : 96% look to you now? Assuming
you want to be a winning competitor.

Policy 1.10 Get Realistic

Base your plans on realistic information
about state of the art, and state of com-
petition. Specify that information so that
it is integrated into your objectives, and
preferably updated

Why?
So you can derive realistic and compet-•
itive plans
So you can explain and justify your ob-•
jectives to buy-in and approval instanc-
es.
So you can prevent unanchored (in re-•
ality) managers from demanding more
than you really need to do, or afford to
do, or is possible to do.

3/2014 393/20143/2014

SOFTWARE ENGINEERING

AUTHOR

Tom Gilb

Tom Gilb was born in Pasadena in 1940, emigrated to London 1956,
and to Norway 1958, where he joined IBM for 5 years, and where he
resides, and works, when not traveling extensively.

He has mainly worked within the software engineering community,
but since 1983 with Corporate Top Management problems, and since
1988 with large-scale systems engineering (Aircraft, Telecoms and
Electronics).

He is an independent teacher, consultant and writer. He has pub-
lished nine books, including the early coining of the term “Software
Metrics” (1976) which is the recognized foundation ideas for IBM
CMM/SEI CMM/CMMI Level 4.

He wrote “Principles of Software Engineering Management” (1988, in
2006 in 20th printing), and “Software Inspection” (1993, about 14th
printing). Both titles are really systems engineering books in software
disguise. His latest book is ‘Competitive Engineering: A Handbook
for Systems Engineering, Requirements Engineering, and Software
Engineering Management Using Planguage’, published by Elsevier,
Summer 2005.

He is a frequent keynote speaker, invited speaker, panelist, and tuto-
rial speaker at international conferences.

He consults and teaches in partnership with his son Kai Gilb, world-
wide. He happily contributes teaching and consulting pro bono to de-
veloping countries (India, China, Russia for example), to Defense Or-
ganizations (UK, USA, Norway, NATO) and to charities (Norwegian
Christian Aid and others).

He enjoys giving time to anyone, especially students, writers, con-
sultants and teachers, who are interested in his ideas - or who have
some good ideas of their own. He is a member of INCOSE (www.
incose.org).

His methods are widely and officially adopted by many organizations
such as IBM, Nokia, Ericsson, HP, Intel, Citigroup - and many other
large and small organizations.

Website: www.gilb.com

40 3/20143/2014

An overview of the SQuBOK®
- Software Quality Body of
Knowledge - and its benefits
in the context of global
collaborations for software
quality

SOFTWARE ENGINEERING

Abstract

This article presents an overview of the
SQuBOK® guide, a guide book on Software
Quality Body of Knowledge, and describes
its benefits in the context of global collab-
orations for software quality. The benefits
come from a hybrid integration of regional
and international software quality knowl-
edge, a distinct feature of the SQuBOK®
guide.

Introduction

Today huge information is everywhere in
the world and can be accessible beyond
borders in real time by using the internet.
However it sometimes exceeds one per-
son’s information handling capability and
unnecessary searching effort is consumed
in the information space. Especially it is
difficult for a novice software engineer
to find, select, and learn essential infor-
mation from a wide variety of software
quality information without assistance by
software quality experts. Hence the estab-
lishment of the SQuBOK® becomes very
important in order to realize easy and fast

Susumu Sasabe

3/2014 413/20143/2014

AN OVERVIEW OF THE SQUBOK®

access to a structured valuable knowledge
successfully practiced in the software and
software-based systems industry.

The first edition of the SQuBOK® guide was
originally planned, compiled, reviewed,
and published in 2007 by a joint project
of SQiP (Software Quality Professionals)
group of JUSE (Union of Japanese Scien-
tists and Engineers) and Software Division
of JSQC (The Japanese Society for Qual-
ity Control) [1]. This project was led by
Y. Okazaki and the development process
of the SQuBOK® guide is reported in the
paper [2]. A brief introductory article of
the SQuBOK® guide was presented in the
German magazine by G. Fessler [3].

information framework has an affinity for
the structure defined in the international
standard ISO/IEC 12207 - Software Life
Cycle Processes. The common template
of the SQuBOK® guide includes following
four elements to describe each knowledge
item.

Overview of the SQuBOK® guide

The SQuBOK® guide is a collection of soft-
ware quality knowledge with guidance
by the Japanese software quality experts
of philosophies and principles relating to
their knowledge. It does not include de-
tailed descriptions of the knowledge; in-
stead it provides summarized descriptions
of the knowledge and access information
to reference materials, such as books,
papers, and international de jure and de
facto standards for further reading. De-
scription volume is about 1 to 2 pages per
one knowledge item. When you open the
SQuBOK® guide you may see the descrip-
tion of each knowledge item at a glance
without turning pages.

The SQuBOK® guide is a hybrid integra-
tion of software quality knowledge recog-
nized and practiced both in Japan and in
the world. The hybrid integration has been
achieved by using common information
framework and template. The common

Element 1: Outline of the
knowledge item
Element 2: Related topics/
knowledge areas of the
knowledge item
Element 3: References of the
knowledge item
Element 4: Further readings of
the knowledge item

The SQuBOK® guide is organized into fol-
lowing three chapters and five appendi-
ces.

Chapter 1: Fundamental Concept
of Software Quality
Chapter 2: Software Quality
Management
Chapter 3: Software Quality
Methods

Appendix A: List of
Recommended Readings/Papers
Appendix B: List of References/
Further readings
Appendix C: List of Standards
Appendix D: List of Award-
Winning Papers
Appendix E: Index

42 3/20143/2014

The SQuBOK® is configured with a hier-
archical tree diagram which breaks down
software quality knowledge into five lay-
ers. There are about 300 knowledge items
in the tree. Among them, about 40% of
the knowledge items are recognized and
practiced in Japan and 60% are interna-
tionally recognized and practiced knowl-
edge items.

sages, which explain tacit knowledge, are
now included in the 380 pages SQuBOK®
guide in an integrated and structured
way.

Readers of the SQuBOK® guide may se-
lect the best knowledge from a collection
of knowledge to formulate their own soft-
ware development processes and software
quality management systems which suit
their own business environment and proj-
ect needs.

Certification program for Soft-
ware Quality Engineers in Japan

The SQuBOK® guide provides a foundation
of syllabus for software quality engineers
education and training program. It also
serves as a guide to develop knowledge and
skills competency assessment program in
the field of software quality. In Japan the
JUSE provides a certification scheme called
JCSQE (JUSE Certified Software Quality
Engineer) program since 2008. Certifica-
tions of Foundation and Intermediate lev-
els are in operation and Advanced level is
planned. The SQuBOK® guide is not only
for software quality assurance profession-
als but also for all stakeholders relating to
software and software-based systems.

AN OVERVIEW OF THE SQUBOK®

Layer 1: Categories
Layer 2: Sub-categories
Layer 3: Knowledge Areas
Layer 4: Knowledge Sub Areas
Layer 5: Topics

Benefits from using the SQuBOK®
guide

For European people, the SQuBOK® guide
provides an idea and inspiration to under-
stand not only traditional Japanese qual-
ity approaches, such as Kaizen (continu-
ous improvement)[4] and TQC/TQM (Total
Quality Control/Management)[5], which
contributed to the Japan’s rapid econom-
ic growth but also to understand a back-
ground of recent agile software develop-
ment approaches, such as SCRUM[6] and
Software Kanban[7], which are inspired
and formulated through the principles and
practices successfully applied in Japanese
quality improvement. The foundation of
software quality improvement in the Jap-
anese IT organizations and individuals is
based on combining software engineering
methodologies and TQM.

Readers of the SQuBOK® guide may re-
ceive direct messages written by many
Japanese software quality experts, some
of which were not disclosed outside their
organizations in the past. Important mes-

3/2014 433/20143/2014

SOFTWARE ENGINEERING

AUTHOR

Susumu Sasabe

Susumu Sasabe is an advisor of the JUSE (Union of Japanese
Scientists and Engineers, the Deming Prize establisher) since
2008. He joined NEC Corporation in 1972 and worked in re-
search and development of embedded software for telecom-
munication network systems. He managed several internation-
al joint software development projects with companies in North
and South America and Asia and conducted a company-wide
quality management system and software process improve-
ment inside the NEC Group for over 10 years. His management
activities include application of learning through KAIZEN and
TQM (Total Quality Management) approach to software engi-
neering and software product innovation.

He has been a frequent speaker at international conferences
on software quality including the World Congress for Software
Quality (WCSQ). He is also a member of review group of the
first version of SQuBOK (Software Quality Body of Knowledge),
a software quality knowledge compilation project in Japan.

In 1999 and 2008, he received the Best Paper Presented Award
at the 6th European Conference on Software Quality in Vienna,
Austria and the Best Quality Technical Paper Award from the
Japanese Society for Quality Control (JSQC), respectively.

Conclusion

Before the SQuBOK® guide was released
the software quality principles and prac-
tices successfully practiced in Japan were
very hard to access and understand from
outside Japan. The hybrid integration of
the SQuBOK® guide provides the read-
ers with an opportunity for sharing both
regional and international software qual-
ity knowledge and supports to formulate
a tailored strategy of software quality im-
provement which fits to each region in the
world. Cross border collaborations enhance
merging into an extended SQuBOK® guide

to be shared among software quality engi-
neers in the world. The SQuBOK® guide is
a useful tool for global teamwork.

44 3/20143/2014

REFERENCES

[1] SQuBOK® Project Team, „Guide to the Software Quality
Body of Knowledge - SQuBOK® guide”, Ohmsha Ltd., ISBN978-
4274501623, 2007

[2] Y. Okazaki, T. Okawa, A. Sakakibara, „SQuBOK® (Software
Quality Body of Knowledge) Project - Guide to the SQuBOK® Ver-
sion 1 Born this way”, The 4th World Congress for Software Quali-
ty, Bethesda, Maryland, U.S.A., 2008

[3] G. Fessler, „Japanese recipe, SQuBOK®: Toolkit for better ap-
plications”, (in German) iX Magazine No.2, 2014

[4] M. Imai, „Kaizen: The Key to Japan’s Competitive Success”,
McGraw-Hill, ISBN978-0075543329, 1986

[5] K. Ishikawa, „What is Total Quality Control? The Japanese
Way”, Prentice Hall. ISBN 0139524339, 1985

[6] K. Schwaber and J. Sutherland, „The Scrum Guide TM”, 2013
https://www.scrum.org/Portals/0/Documents/Scrum%20
Guides/2013/Scrum-Guide.pdf

[7] D. Anderson, „Kanban: Successful Evolutionary Change
for Your Technology Business”, Blue Hole Press, ISBN 978-
0984521401, 2010

AN OVERVIEW OF THE SQUBOK®

SQuBOK® Guide
Guide to the Software Quality Body of Knowledge

Concise Version

http://www.juse.or.jp/software/squbok-eng.html

3/2014 453/20143/2014

Publisher
VWT Polska Michał Kruszewski
Przy Lasku 8 lok. 52, 01-424 Warszawa
Number NIP 5272137158
Number REGON 142455963

Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl

WWW
www.qualemagazine.com
www.quale.pl

Facebook
http://www.facebook.com/qualemagazine

Advertisement
info@quale.pl

Cooperation
If you are interested in cooperating with us,
please send us a message:
info@quale.pl

Magazine All trade marks published are property of the
proper companies.

Copyright:
All papers published are part of the copyright
of the respective author or enterprise. It is
prohibited to rerelease, copy or modify the
contents of this paper without their written
agreement.

The following graphics have been used:

Cover

Ball Landscape River Winter Rays Fractals Fractal
http://pixabay.com/en/ball-landscape-river-winter-
rays-67200/

MAGAZINE

