
1

Systematic Innovation

Q
ua

le
 4

/2
01

4

The relation between
requirements and testing in Agile

projects

Process Patterns
in Test Automation

Seretta Gamba
 Dorothy Graham

Hans van Loenhoud
Erik Runhaar

2 4/20144/2014

Organizers

March 5th-6th 2014, Warszawianka hotel, Jachranka (near Warsaw)

BUSSINESS OBJECTIVES – SUPPORTED!
VALUE FOR CLIENT – DELIVERED!

TIME AND BUDGET – MET!

www.qfit.pl

CONFERENCE

QUALITY FOR IT

4/2014 34/20144/2014

Content

EDITORSHIP
Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl

Cooperation:
Tomasz Olszewski
tomasz.olszewski@quale.pl
Zuzanna Gościcka-Miotk
z.goscicka@gmail.com

Website:
www.qualemagazine.com (ENG)
www.quale.pl (PL)

Facebook:
http://www.facebook.com/qualemagazine

29. Process Patterns in Test Automation
Seretta Gamba, Dorothy Graham

SOFTWARE TESTING

4. Systematic Innovation...an oxymoron?
David Verduyn

21. The relation between requirements and testing in Agile
projects
Hans van Loenhoud, Erik Runhaar

39. Two sister acronyms: QA and BPR
Bogdan Bereza

SOFTWARE ENGINEERING

Organizers

March 5th-6th 2014, Warszawianka hotel, Jachranka (near Warsaw)

BUSSINESS OBJECTIVES – SUPPORTED!
VALUE FOR CLIENT – DELIVERED!

TIME AND BUDGET – MET!

www.qfit.pl

CONFERENCE

QUALITY FOR IT

4 4/20144/2014

David Verduyn

Systematic Innovation
 . . . an oxymoron?

SOFTWARE ENGINEERING

Systematic Innovation: A structured process and set
of practical tools to create (or improve) products and
services that deliver new value to your customers.

Introduction

Are “Systematic” and “Innovation” two
words that can’t coexist because they are
mutually exclusive? Isn’t it true that too
much structure stifles Innovation? Can
Innovation really be systematic? . . . OK,
enough rhetorical questions!

Our assumption in writing this is that any-
one reading it develops products, services,
or software and has an interest in Innova-
tion. We also assume most will agree that
in today’s globally competitive market, In-
novation is an essential element to thrive,
and for some to simply survive. Unfor-
tunately, there are many forces working

against Innovation, including he two com-
mon misconceptions listed below:

“Innovation and creativity cannot
be taught, you either have it or you

don’t”

“Innovation is only for the R&D
group working on new or urgent

projects”

4/2014 54/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?

SYSTEMATIC INNOVATION

The following six sections describe a practical and proven
approach for Systematic Innovation used by organizations

independent of size, type, location, or culture.

Sect. Section Title What’s in it for you?
I Do you really need

Innovation?
Learn WHY continuous improve-•	
ment is not enough,
Learn strengths and limits of typi-•	
cal Voice of Customer (VOC) tech-
niques,
Learn HOW to get a comprehen-•	
sive set of customer requirements
for your project,
Learn HOW to maximize the likeli-•	
hood of market success.

II HELP! We need some
Innovation, and fast!

Reflect on a project situation that •	
your company will likely experi-
ence in the future if it hasn’t al-
ready.

III Sorry, one size never
fits all.

Learn WHY there are no single, •	
silver bullet approaches/tools for
Innovation,
Learn HOW to select the right “In-•	
novation tool” for the job,
Learn WHAT Innovation tools are •	
being leveraged by the world’s
most successful companies.

IV Just because it’s a
NEW idea doesn’t
mean it’s a GOOD
idea!

Learn HOW to increase your “In-•	
novation and Inventive Thinking”
capabilities,
Learn WHY Innovation alone is not •	
enough and WHAT to do about it,
Learn HOW an eight step process •	
for Systematic Innovation can
work for you.

V Case Studies: Idea
generation & problem
solving tools.

For those who like specific exam-•	
ples, see HOW a few Innovation
tools work with three brief case
studies.

VI Summing it up. WHAT we hope you took away •	
from this introduction to System-
atic Innovation.

6 4/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?

Do you really need Innovation?
(The CAGE Model & the Innova-
tion Sweet-Spot)

Most teams understand that Innovation
has two main beneficiaries; the internal
and external customers for the product,
service, or software being developed.
When you dig deep, you find these cus-
tomers have many needs you must satisfy
to earn their business.

Some of the needs are obvious and some
hidden (blatant and latent). To compound
the issue, in every case we have seen,
there are multiple customers with these
needs.

As an example, consider the development
of a new medical instrument used for the
treatment of cancer or heart disease. Who
are the customers?

The external customers: •	 The sur-
geon, technician, lab assistant, nurse,
purchaser, insurance carriers, and the
patient are all examples of external
customers. Each of them has a set of
requirements; some of them overlap
and some are unique to that customer
segment.

The internal customers:•	 The manu-
facturing group that is looking for ease
of manufacture and assembly, the lo-
gistics planners who are concerned
with shipping and distribution issues,
the purchasing group who want the
lowest costs for maximum profits, the
intellectual property department that is
concerned with licensing potential and
competitive advantages, the develop-
ment team of a higher level assembly

is concerned with interface issues and
functional performance, etc. Each of
these internal customers has a set of
their own requirements; some of them
overlap and some of them are unique
to that customer segment.

Without external customers, internal cus-
tomers are irrelevant because external
customers put money into the value chain.
On the other hand, if we only focus only on
external customers and violate internal re-
quirements we will also fail. It is important
to have a comprehensive understanding
of both the external and internal customer
requirements to win in our increasingly
competitive market.

To accomplish this deep understanding, it
is first important to understand why many
new products and services fail. Three spe-
cific reasons (root causes) most new prod-
ucts and services fail are listed below:

Missing value added features or quali-1.	
ties that differentiate your offering from
the competition, i.e., Innovation)
Lack of understanding of your customer 2.	
needs (i.e. Their top priorities)
Being “too” customer driven, i.e., be-3.	
lieving and incorporating everything
your customers tell you)

The CAGE Model shown in Figure 1 illus-
trates critical elements that must be in-
cluded and excluded for success in the
marketplace. The graphic may look a little
confusing at first glance, but is actually
quite illuminating of the reality found with
most development teams.

In the below explanation, we will take you
through a clear description of what the

4/2014 74/20144/2014

SOFTWARE ENGINEERING
CAGE MODEL

Fig. 1. The CAGE Model

three main regions represent as well as a
specific description on each of the “A-G”
sub-regions that need to be understood
for success.

The CAGE Model shows three distinct
“knowledge universes” that typically occur
in the beginning stages of new product,
service, or software development. Below
the three universes, or regions, are ex-
plained in detail: See a 5 minute CAGE
Model video at www.kanomodel.com

Region #1•	 (Yellow: Thin dashed rect-
angular line) represents how project
teams initially understand the custom-
er’s requirements and define success
before doing any real customer or mar-
ket research. Note: Believe it or not,

many product development teams stop
here. They never formally talk to their
customers to better understand their
needs.
Region #2•	 (Blue: Solid thin oval line)
represents what customers will tell you
about their needs during typical VOC
Research. Note: Customers are gener-
ally not very effective at articulating all
their needs.
Region #3•	 (Green: Bold dashed circle)
represents the team’s ultimate require-
ments goal. It’s the bulls-eye, the In-
novation sweet-spot, a comprehensive
and accurate set of requirements that
will win in a competitive marketplace!
Note: What we are suggesting here is
that even classic VOC research tech-
niques (Region #2) are not enough to

8 4/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?

hit the bulls-eye, the Innovation sweet-
spot.

This model shows why many project teams
fail to hit the Innovation sweet-spot. Note
there are several distinct and unique areas
labeled in (and outside) the sweet-spot
bulls eye. Since our goal is Region #3, the
bulls-eye, we must understand and docu-
ment the four elements (C, A, G, and E)
and make sure we minimize or eliminate
the elements (B, F, and D) outside it. An
explanation for each of these regions is de-
scribed below, starting with the elements
outside the bulls-eye, the items you don’t
want.

Area D •	 is straight forward. It repre-
sents what the project team simply got
wrong! Customers don’t want these.
Too much of one thing, not enough of
the other, wrong feature or feature set,
an engineer’s pet project, and so on.
We all know this happens and there are
many things that cause it, most of them
are preventable.
Area B•	 might be a bit surprising to
some, but it represents what the cus-
tomers get wrong! Sometimes they ask
for more than they are willing to pay
for or they ask for solutions that don’t
really address their “real needs.” We
must recognize and eliminate these in
advance.
Area F•	 represents requirements the
project team and customer got wrong!
Yes, this is rare, but sometimes they
both get it wrong!

Since areas D, B, and F are regions we
don’t want in our offerings, let’s focus on
the elements we do want. (i.e. The C, A,
G, and E elements).

Area C •	 represents important Customer
Insights the project team will discover
during effective VOC research. Through
questioning and observational tech-
niques a few golden nuggets often sur-
face.
Area A •	 (in the center) represents re-
quirements that All agree upon! The
development team was aware of them
before customer research, the custom-
er verified them during the research,
and they are the things customers will
consciously look for when evaluating
options and purchasing.
Area G •	 represents the Givens, – These
are needs or requirements customers
won’t tell you about because they “go
without saying,” they are expected, as-
sumed, or obvious – For example, when
buying a computer, they don’t ask for a
power plug. When making reservations
at a hotel, no-one will ask for a window
in the room or a reliable lock on the
door, but if either are missing, custom-
ers will likely be quite upset and never
come back to that hotel.
And finally, •	 Area E represents the “Ex-
citement” Quality, these are the gold
nuggets, the Innovations, the “WOWs”
customers won’t tell you about these
because they don’t know about them,
yet!! These Innovations will differen-
tiate your offering, give you a com-
petitive edge, increasing your market
share, and allow for higher profit mar-
gins. To get Area E, we leverage the
over three dozen idea generation and
problem solving tools utilized in step
4 of the 8-Step Systematic Innovation
Process.

The main point of the CAGE Model is to
clearly illustrate the risk in a weak set of
requirements and the importance of go-

4/2014 94/20144/2014

SOFTWARE ENGINEERING

ing beyond the VOC for truly innovative
offerings. Many project teams assume
they already know their customers’ needs,
far better than assuming, is effective VOC
research to capture missing insights, and
even better than that, especially in a com-
petitive landscape, is combining modern
VOC efforts with modern “Systematic In-
novation” tools to get as close as possi-
ble to the “CAGE bulls-eye” shown in this
model.

HELP! We need some Innovation,
and Fast!

Back in 1993, while researching product
development best practices, we were for-
tunate to discover a small group of profes-
sionals in California preaching a new and
structured approach to invention and in-
novation. Back then, this was a relatively
new concept and we were naturally skepti-
cal, but very curious. Since then, our pas-
sion, interest, and belief has grown expo-
nentially through researching, discovering,
and developing further “Innovation Best
Practices.” Many of these best practices
have been adopted by or adapted from in-
dustry leaders like 3M, Procter & Gamble,
Intel, W.L. Gore, Dell Computer, Johnson &
Johnson, HP, Samsung, Ford, Motorola, as
well as countless others.

Some years ago, in 2003, we were asked
by one of the top three American auto-
mobile anufacturers to help them create
a few unique selling propositions (USPs)
for a current vehicle that was beginning
to lose market share. USPs are essentially
new Innovations or significantly improved
features that give the customer a distinct
reason to buy one product over the com-
petition. Examples of USPs include; the

first fold away seats in a car, a vacuum
cleaner that never loses suction, a com-
puter screen that works in direct sunlight,
or offering a free pizza if its delivery takes
more than 30 minutes.

For our automotive client, as it so often
occurs, the timeline for the needed USPs
was extremely tight. They wanted concep-
tual ideas as soon as possible, preferably
yesterday. Wanting to be efficient, they
asked us to teach them only the best In-
novation methods. Having well over three
dozen “Systematic Innovation” tools in our
toolbox, it was clear we needed to deter-
mine which techniques were the best to
focus on for their particular situation.

Rewinding a little bit . . . since 1993,
through our research on Innovation and
work in many diverse industries, we dis-
covered several common and reoccurring
situations that called for inventive thinking.
Most of these situations were independent
of the industry or project we were working
on. Below are a few of the situations we
encountered.

We have a tough technical or customer 1.	
problem to solve.
We want to “WOW the customer” by 2.	
differentiating our offering from our
competitors.
We must reduce cost or complexity of 3.	
our product or service.
We need to resolve a conflict (improv-4.	
ing one thing degrades another).
Our competitor has patented a great 5.	
idea - We need to circumvent it.
We want to increase the top line rev-6.	
enues by offering new products or ser-
vices.
We need to reduce the risk of failure in 7.	
our product or service.

10 4/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?

We need to make sure we are solving 8.	
the “right problems.”
We need to understand “future” cus-9.	
tomer and market needs.

We must break routine thought pat-10.	
terns for more sustainable Innovation.

Although there were a several more situ-
ations that called for inventive thinking,
most of them were subsets of the ten cat-
egories listed above. These situations have
been experienced by many organizations
in their pursuit to succeed in their mar-
kets. The good news is that over the past
20 years, several uniquely effective In-
novation tools, methods, and tactics have
emerged to address each of the concerns
listed above.

Sorry, One Size Never Fits All

When fixing household problems, we don’t
always grab a hammer, we try to select
the most appropriate tool for the job; a
screw driver to remove batteries from a
toy, a wrench to tighten your daughter’s
kick stand, silicone to repair a small leak,
and yes, duct tape for almost everything
else.

Most people have heard of Maslow’s “if the
only tool you have is a hammer, every-
thing looks like a nail.” Just as we should
select the right household tool to get the
job done well, we must do the same for
Innovation tools. For product and service
development, there are well over three
dozen Innovation tools we recommend;

TOOLS

Fig. 2. SI Tool Selection Matrix (top portion, partial list)

4/2014 114/20144/2014

SOFTWARE ENGINEERING

each with their own strengths and weak-
nesses. Knowing this, the trick becomes
twofold;

Knowing which tool(s) are best for your 1.	
specific “inventive situation”
Learning how to use the tools properly 2.	
that apply to your situation

For reason #1 above, we have created a
“Systematic Innovation Tool Selection Ma-
trix” partially shown in Figure 2. It is ex-
tremely rare to need or use all the Sys-
tematic Innovation tools, but common to
use more than one at a time. This Tool Se-
lection Matrix aids a team or individual in
determining which Innovation tool(s) are
best to use for their “inventive thinking”
situations.

On the left side of the matrix, we placed
several universal “Reasons to Innovate.”
Across the top is an extensive set of the
“Systematic Innovation Tools” we recom-
mend. We designed the intersections to
show the usefulness of each of the Innova-
tion Tools. The intersections simply show
how well each of the tools address the
10 “Reasons to Innovate.” The darker the
cells, the better the tools are at address-
ing that particular reason to innovate. The
most common way you can use this matrix
is to first determine why you need inven-
tive thinking, and then look horizontally
across the intersections for the best tools
for your particular situation. For example,
if you needed to reduce cost or complex-
ity, reason #7, you would use Brainwriting
6-3-5, The Effects Knowledgebase, Knowl-
edge Mining, Lateral Benchmarking, the
Trimming Technique, and so on.

Back to our automotive client example:
As you remember, they were in desper-

ate need of some new features (USPs) for
one of their next generation vehicles to
maintain market share in a crowded seg-
ment. Looking at the “Reasons to Inno-
vate,” their request best matched reason
#1; To “WOW a Customer.” The intersec-
tions with the darkest cells were the ones
we used with that project team (Brainwrit-
ing, Customer Modifications, Effects, The
Holistic Cube, Lateral Benchmarking, Lead
Users, The MSE Effect, Painstorming, etc).
As a result, over 240 ideas were gener-
ated and about a dozen finalists went on
to a more detailed design phase with con-
cept reviews. Three ended up in the ve-
hicle, including the first vehicle integrated
heated or cooled cup holder with no mov-
ing parts.

As shown in Figure 2b, the SI Tool Selec-
tion Matrix also has a section with addi-
tional information about each of the Sys-
tematic Innovation Tools:

Is software needed to use the tool? The •	
bad news: Two of the 30+ Innovation
Tools on the matrix need third party
software. The good news: The rest of
the tools do not need software!
Applicability of each tool This line item •	
clearly shows which tools are applica-
ble for product, services, software, or
business processes development. (Not
all tools work for all types of projects;
remember, no silver bullets!)
Overall difficulty to master the tool. Just •	
like any handyman tool, some can be
learned in minutes (a screw driver) with
a high degree of competence while oth-
ers (a four axis drill press) take much
more time and practice to master.
Abstraction level of suggestions that will •	
come from using the tools. Some tools
will give you very specific suggestions;

12 4/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?
TOOLS

Fig. 2b. SI Tool Selection Matrix (bottom portion, partial list)

others will give you high level generic
directions to ponder.
Is customer input needed for the tool? •	
Some tools require input from custom-
ers; others are completely independent
from customer input. Imagine that!

Just because it’s a NEW idea
doesn’t mean it’s a GOOD idea!

As you have seen above, there is a diverse
set of “Idea Generation & Problem Solv-
ing Methods” available, but we all know,
not all ideas & concepts are good ideas.
For this reason, Idea Generation must be
complimented with additional best practic-

es to reduce the likelihood of “bad ideas,”
that is, ideas that will not succeed in the
market. This is done to make product de-
velopment efficient while ensuring value
for the ultimate beneficiary, your internal
and external customers.

Figure 3 shows a bird’s eye view of C2C’s
8-Step process we use for Systematic In-
novation. The SI Tool Selection Matrix dis-
cussed earlier is used in Step 3. There are
two very important steps before that that
should be considered.

There is considerable detail and explana-
tion behind each of the eight steps shown
above.

4/2014 134/20144/2014

SOFTWARE ENGINEERING

PROCESS

This detail is beyond the scope of this in-
troduction, but certainly available upon
request.

An important and essential step in any
project is the “Project Charter” in which
the team and management identify the
stakeholders, targeted customer and mar-
ket segments, project global goals, scope,
constraints, team membership, etc. You
can consider the project charter to be a
prerequisite to this 8-Step process. Below
is a very brief description
for each of the eight steps in the System-
atic Innovation process shown above.

Step 1 – Identify, Document, and •	
Prioritize Current and Emerging
Customer Requirements – In this

critical step we begin to understand
requirements by not only using con-
ventional Voice of the Customer (VOC)
methods, but also by recognizing the
fact that customers, especially exter-
nal, are simply not effective at articu-
lating all their requirements that will
win their future business. There is a lot
of truth in a quote heard from a 30 year
marketing executive:

“Customers don’t know what they want,
they want what they know.”

The point here is that most customers
know what they want today, but have
a hard time articulating what they will
want tomorrow. Knowing this, we must
expand on what customers have articu-

Fig. 3. 8-Step Process for Systematic Innovation

14 4/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?

lated with Latent Need Discovery Tools
to better understand emerging require-
ments. These emerging requirements
often come in the form of “current and
future problems” that need to be un-
derstood and solved. The solution to
these problems will likely separate the
leaders from the pack in a competitive
landscape.

Step 2 – Situation Analysis•	 – In this
step, when necessary, we analyze our
highest priority requirements (whether
external or internal) to deeply under-
stand the situation and potential solu-
tion space. One of the several outputs
of this step is to discover “standard” or
potentially “reformulated” problems.
Standard problems are problems that
are generalized or abstracted into a form
that has been seen or solved before.
This way, we can more easily leverage
a vast amount of existing knowledge
from a cross industry and discipline da-
tabase and “best practices” to address
these standard problems. Reformulated
problems are problems that have been
elaborated to the point that allows for a
completely different solution path than
the original problem statement. The
newly reformulated problem statement
may be much easier to solve than the
original problem statement. Situation
Analysis and Function Modeling tools
assist here.

Step 3 – Select the appropriate Idea •	
Generation and/or Problem Solving
Tools – This step was described in de-
tail earlier in the “Sorry, One Size Never
Fits All” section. In this step we use the
Tool Selection Matrix shown in Figure
2. Note: When the problems or chal-
lenges are well understood in advance,

it is not uncommon for a project team
to start here in Step 3. In this case,
the assumption is that Steps 1 and 2
have been adequately completed. In
other words, the internal and external
customer requirements are well under-
stood and the problems or challenges
the team needs to solve are clear and
truly reflect the top project priorities.

Step 4 – Concept Generation us-•	
ing appropriate SI Tools - In this
step we select a handful of appropriate
Idea Generation and Problem Solving
tools from the SI Tool Selection Matrix
to generate conceptual ideas. Over 36
distinct tools exist. More detail and ex-
amples of these tools in this step are
discussed later in this introduction.

Step 5 – Evaluate, Synthesize, and •	
Select the Final Concept – Here we
use a comprehensive set of objective
criteria to evaluate, synthesize, and se-
lect a final concept. The output of this
step is the one or two “best concepts”
that we need to further develop.

Step 6 – Detailed Product, Process, •	
or Service Design & Verification -
Once concepts are generated, detailed
design, engineering, optimization, and
verification must be executed. Several
design and development best practices
are used here.

Step 7 – Communicate Value to the •	
Customer – The best ideas won’t sur-
vive if the value of the offering isn’t un-
derstood or communicated well to the
customers. Strategies on how to im-
prove the acceptance of new ideas are
understood and executed here.

4/2014 154/20144/2014

SOFTWARE ENGINEERING

Step 8 – Deliver New Product or •	
Service – In this step typical logistical
planningtools to ensure a prompt and
problem free delivery and distribution.

Case Studies: Idea Generation &
Problem Solving Tools

This section was written for those people
who like to see some examples and specif-
ics of how the tools actually work. In our
training, workshops, and webinars we go
into great depth with step-by-step algo-
rithms for each of the tools as well as many
examples. This section will scratch the sur-
face on three of the roughly 30 methods,
but give a flavor fortheir applications.

As you remember, in Step 4 of our Sys-
tematic Innovation Process (Figure 3),
there exists well over three dozen specific
tools for problem solving and idea gen-
eration. As mentioned earlier, since there
are many of these tools, the SI Tool Se-
lection Matrix (Figure 2) is used to select
the most appropriate tool or set of tools
for your situation. It is very common for
a given situation to use several tools si-
multaneously or in sequence to generate
ideas. Below, we are going to show you

brief examples of three of the tools in ac-
tion. We will introduce three of the 30+
techniques. (The Trimming Technique,
Memorable Sensory Experience, and the
Separation Principles)

Let’s take a simple product example where
a team proposes the following question:
Could we trim the fan in a computer or
a video projector? The obvious answer is
“No, if we do that it will overheat!” We have
found that one of the hardest aspects of
the Trimming Technique is to give yourself
permission to explore the possibilities of
trimming anything.

Common psychological inertia or exist-
ing paradigms cause these questions to
be uncomfortable. When there is a call for
inventive thinking, comfort is something
you should temporarily throw out the win-
dow. Having said that, to keep things in
perspective, the opposite is also true, that
is, relaxation and comfort, in a stress free
atmosphere, helps the sub-conscious cre-
ative juices flow. While this is another fas-
cinating topic to explore, it is also a sepa-
rate discussion.

Trimming is a proactive and conscious
activity that has your mind consider six

EXAMPLE

EXAMPLE 1: The Trimming Technique – This is one of the more versatile
Idea Generation and Problem Solving tools because it is applicable for many
situations that call for inventive thinking. The Trimming Technique challenges
and questions your current assumptions. Doing this often leads to very interest-
ing and innovative ideas. Trimming’s underlying assumption is the theoretical
ability to eliminate (trim) ANY part of ANY system or ANY step in ANY process. It
clearly describes six thought provoking “rules or directions” that force your mind
to think along directions that are a bit uncomfortable and may seem ineffective
at first glance, but often lead to new ideas.

16 4/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?

problem solving directions. These direc-
tions are somewhat uncomfortable and
unconventional.

Trimming Rule #1 of 6 asks you to con-
sider using other elements of the system
or environment to provide the function the
trimmed element used to perform. For a
projector or computer, these are the ele-
ments that make up the product or other
elements in the surrounding environment,
which are called “the supersystem.” The
elements of a projector are the motor,
bracket, power supply, housing, lens, etc.
The supersystem elements are the table it
sits on, the air it interacts with, the user
that sets it up, etc. One theoretical concept
is to have a system element, the bracket
that holds a motor, act as a heat sink for
the bulb. This way, through conduction,
heat could theoretically be dissipated. If
that sounds impossible consider the Apple
Mac G4 Cube. When introduced in late
2000, Apple trimmed the fan and had a
central heat sink that used the simple
fact that heat rises. It continually moved

the heated air through the hollowed heat
sinked center of the computer, no fan at
all.

Trimming Rule #4 of 6 challenges the
actual function of the object you want to
trim. Sometimes you can get by without
that function. The function of the fan in
a projector is to cool the projector bulb.
We now contemplate the question; do
we have to cool the bulb? This question
poses a completely different direction to
consider. Is it possible to simply select an
alternative bulb that operates reliably at
hot temperatures? Worth thinking about!
If those two rules don’t foster ideas, the
Trimming has a total of six thought pro-
voking rules.

The Sense of “Extra Intelligence” can be
found on many innovative offerings from
vehicles that tell you how “green” you are
driving, to grocery store packaging that
tells you how ripe your purchase is, to sac-
rificial sensors on heavy equipment that
tell you when a part is about to wear out

EXAMPLE

EXAMPLE 2: The Memorable Sensory Experience (MSE) capitalizes on the
importance of “the experience” for the end users. This is exactly why people
will pay a 300% premium for a cup of coffee at specialty coffee shops or meal
at a high end restaurant. It is the whole experience that contributes to value,
not just the product or service alone. The idea behind the MSE effect is to incor-
porate multiple “senses” into the product or services to create a poly-sensual
experience. To do this, we should consider the five classic senses (Touch, Taste,
Smell, Sight, and Sound) as well as the sense of “humor / entertainment / en-
joyment” and “extra intelligence”, totaling seven senses to consider incorporat-
ing into your customers’ experience. Of the seven senses, the one that is most
difficult and simply not appropriate in most cases is taste. Unless you have a
product that you eat or will go in the mouth, taste will not apply. An example
of this is a dental floss and tooth paste manufacturer who came out with mint
and cinnamon flavors. They both enjoyed a significant market share increase
for a period of time until the competitors copied the idea.

4/2014 174/20144/2014

SOFTWARE ENGINEERING

so preventive maintenance can be per-
formed, to a sports car that tells you your
0 to 60 time and lateral g-forces.

In the US, Southwest Airlines enjoys very
high customer ratings, partially due to the
sense of humor, friendliness, and enter-
tainment of the staff on and off the plane.
The iPhone is an undeniable and over-
whelming success in the market. Apple
didn’t accidently excel in five of the sev-
en MSE categories! (Exceptions are taste
and smell). Another interesting example is
a wine manufacturer that proactively in-
corporated all five classic senses into the
wine and bottle. Four of them are obvious
inclusions; taste, smell, sight, and the feel
of the bottle. The not so obvious one was
sound. How is sound brought into a bottle
of wine? The manufacturer went out of its
way to change the geometry of the bottle
to make an elegant and distinct “glurp,

glurp, glurp” sound when poured from the
bottle into a wine glass. These small and
subconscious cues add to the overall “ex-
perience” of the product.

In the late 1990s, Palm and many oth-
er keyboard manufacturers in the world
struggled with the conflict (physical con-
tradiction) of “big keys” for large hands
and comfort and “small keys” for porta-
bility and desk space. In this case, the
Separation Principles were the key (no
pun intended) to solving the Physical Con-
flict. Palm eliminated this age old problem
when they introduced a brilliant foldable
keyboard for their line of PDAs. It was the
world’s first full size small keyboard.

The first eyeglasses for far-sightedness
were invented in the 13th century and ap-
proximately 50 years later, eyeglasses for
near-sightedness were invented. It wasn’t

EXAMPLE

EXAMPLE 3: The Separation Principles contains four thought provoking
strategies to deal with a specific type of problem, namely a Physical Conflict or
Contradiction (PC). A PC is a situation where you have a parameter or character-
istic you want to have in two mutually exclusive states. This happens far more
often than you may think, but people typically discount or ignore these types of
problems because they believe they are impossible to solve.

Examples of Physical Conflicts are:

A knife that you want “sharp” to cut, but “dull” so it doesn’t injure anyone,•	
A television that is “big” for parties, and “small” so it doesn’t take up much •	
space,
A bike tire that is “thin” for rolling resistance, but “thick” for traction, •	
When manufacturing a particular type of fabric material, you want to run •	
“hot” to improve material strength, but “cold” to improve material durabil-
ity,
An procedure you “want” for safety, but “don’t want” because it is time con-•	
suming,
A speed bump you “want” to control fast drivers, but you “don’t want” be-•	
cause they are annoying to drive over.

18 4/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?

until the year 1760 that Benjamin Frank-
lin solved the 500 year old problem of “I
want prescription A for distance and pre-
scription B for reading” without having to
buy two separate pair of glasses. Frank-
lin’s brilliant idea was the revolutionary bi-
focals. Without knowing it, Franklin may
have been the first to use a now common
“Inventive Principle” called “Separation
in Space” which is used for “separating”
a physical conflict, which in this case is a
convex lens and concave lens. He sepa-
rated the lens characteristics on the same
lens but in different “spaces,” namely the
top and bottom of the lens. The foldable
keyboard separates the conflict “big keys”
for big fingers and “small keys” for porta-
bility by using the Inventive Principle Sep-

aration in Time. They make the keys big
only when we need them, then small by
folding them all other times.

If separating the Physical Conflict in Time
or Space does not lead to ideas, there are
two other Separation Principles, namely,
Separation upon Condition and Sep-
aration between the Parts and the
Whole. These four Separation Princi-
ple techniques come from an Innovation
methodology called TRIZ, a Russian tech-
nique that began its development in the
1950s and continues today. TRIZ is a Rus-
sian method that translates into The Theo-
ry of Inventive Problem Solving. TRIZ has
several other methods and tools under its
own umbrella that aids the problem solv-

TOOLS

Fig. 4. Idea Generation and Problem Solving toolset

4/2014 194/20144/2014

SOFTWARE ENGINEERING

er to unique thinking paths to help solve
problems quick and more elegantly.

Summing it all up

The Trimming Technique, MSE Effect, and
Separation Principles described above are
only three of well over three dozen Sys-
tematic Innovation methods for Problem
Solving and Idea Generation. These three
examples just begin to scratch the surface
on the breadth and depth of Innovation
and Inventive Thinking tools and catalysts
that are available. Figure 4 shows a partial
list of the “Right and Left Brained” tools
available in Step 4 of the 8-Step System-
atic Innovation process shown in (Figure
3).

It is well known that many believe struc-
ture is the enemy of Innovation. We be-
lieve in most situations, too little or too
much of anything is harmful and/or coun-
ter-productive. For those who seek to im-
prove Innovation and inventive thinking
skills, it is clear that the right amount of
structure and best practices can dramati-
cally improve your Innovation IQ and Suc-
cess Rate. The 8-Step Systematic Inno-
vation process described combines just

the right amount of proven and practical
structure with the flexibility to customize,
bypass, or add your own best practices to
fit any project’s situation.

The key insights we hope you took away
reading this white paper are:

Innovation tools are not one size fits •	
all. The tools you select depend on the
Innovation job or situation you are try-
ing to accomplish.
Customers can only tell you part of the •	
success formula. You must go beyond
what the customers can articulate to
obtain a comprehensive set of require-
ments.
Everyone can significantly enhance their •	
Idea Generation and Problem Solving
skills.
Innovation applies to much more than •	
just products.
Several “Innovation Best Practices” •	
have been created, refined, and opti-
mized over the last 20 years and are
being leveraged by industry leaders all
over the world.
Innovation can be effectively learned •	
and integrated in any organization.
The right type and amount of structure •	
are the friend’s of Innovation.

Misconceptions Truths
Innovation and creativity
cannot be taught, you
either have it or you
don’t.

Everyone is born with creative abilities.•	
Creativity and inventive thinking skills slowly erode while gro-•	
wing up, being educated, and adapting to your environment.
This erosion can be stopped and even reversed.•	
Systematic Innovation is being taught and used by many of •	
the world’s most successful companies.

Innovation is only for
the R&D group
working on new or
urgent projects.

Innovation can and should be present in all aspects of your •	
business including human resources, logistics, accounts pay-
able, manufacturing, business processes, product design,
engineering, and manufacturing.
Innovation can be incremental for small evolutionary changes •	
and/or radical for paradigm shifting results.

20 4/20144/2014

SYSTEMATIC INNOVATION...AN OXYMORON?

ADDITONAL RESOURCES

[1] To download or view additional material on Systematic Innovation,
visit our web site at www.c2c-solutions.com. There you will find videos,
white papers, flowcharts, workshops on the Innovation tools, training out-
lines, and in the future, an updated version of this paper.

[2] Contact us about our training, workshops, facilitation and modular
webinars on Systematic Innovation topics. Ask us about our custom built
workshops. You choose the topics, length of time and we will design a cus-
tom workshop around your specific needs. info@c2c-solutions.com

[3] Check out a few video tutorials on understanding your customers’
needs better than they understand their own needs, visit: www.kanomod-
el.com See Kano and CAGE Model videos.

[4] Contact me directly with ANY questions: verduyn@c2c-solutions.com

AUTHOR

David Verduyn

David Verduyn is a principal of C2C Solutions Inc., (www.c2c-
solutions.com) a company that pecializes in best practices
for the front end of Product Development. Dave has over 20
years industry experience in design and systems engineering,
technical instruction, product development consulting & techni-
cal course development. Since 1985 he has worked with over
150 fortune 500 companies in the US, Europe, Asia, Australia,
Mexico, and Canada and has trained thousands of engineers
& product developers in product development methods includ-
ing Systematic Innovation, TRIZ (Theory of Inventive Problem
Solving), VOC (Voice of Customer), FMEA (Failure Modes &
Effects Analysis), QFD (Quality Function Deployment), Value
Analysis, and other Lean Design for Six Sigma (LDFSS) Meth-
ods. Dave has a broad range of practical experience including
Automotive, Consumer and Industrial Products, Medical Sys-
tems, Defense and Service Industries.

4/2014 214/20144/2014

SOFTWARE ENGINEERING

Hans van Loenhoud
Erik Runhaar

The relation between requi-
rements and testing in Agile

projects

Introduction

In Agile Scrum projects, requirements are
documented in user stories with their re-
lated acceptance criteria. The user stories
are initially developed by a product owner,
put on a product backlog, and then select-
ed for further refinement and elaboration
in individual iterations.

In practice, we see that these initial user
stories are concentrating on high-level
functionality. Acceptance criteria add some
details and non-functionals to it, but often
do not provide a sufficient basis for testing
the software. A user story mostly focusses
on the functionality of an individual item

of software; end-to-end integration of the
item into a working system-of-systems
seldom receives sufficent attention.

(More) Involvement of the testing exper-
tise in the creation and elaboration of the
user stories will improve their testability
and thereby mitigate business and inte-
gration risks.

22 4/20144/2014

THE RELATION BETWEEN REQUIREMENTS AND TESTING IN AGILE PROJECTS

Requirements

Requirements can be seen as the substan-
tiation of demands, wishes, expectations
of the business that desires some support
for their operation from a software system.
In Agile projects, it is usually the product
owner, being a representative of the busi-
ness stakeholders, that collects these de-
mands and consolidates each of them into
a single statement: the user story. The
format of the user story itself entails a,
often too specific, focus on the functional
requirements: ‘As [a person in a certain
role], I want to [perform a certain action
/ obtain a certain result] so that I [reach
a certain goal / get a certain benefit].’ It is
about what the system is supposed to do,
for instance, ‘As a sales manager, I want
to print an invoice for the product sold,
so that I can collect money from my cus-
tomer.’ The complete set of user stories is
set up to describe the functionality of the
system from a business perspective.

As soon as it is established what the sys-
tem should do, the focus shifts to how the
system should do it, primarily the non-
functional requirements. These non-func-
tionals are documented in the acceptance
criteria for the user story. A common format
is ‘Given [certain preconditions], when
[a certain action is carried out], then [a
particular set of observable consequences
should obtain].’ For instance, ‘Given that
I sold a product, when I enter the sale in
the system, then the invoice is available
within 15 seconds.’ [performance].

A third type of requirements that must
be taken into account when developing a
system are the constraints. Constraints
are mostly technical in nature and limit
the solution space within which the sys-

tem is to be developed. It may be about
the infrastructure on which the system is
to be implemented (‘The system will work
on iOS and Android devices’), or about the
architecture (‘The system must fit into the
existing IT-landscape’). Sometime con-
straints pertain to legal issues, industry
standards, or cultural aspects.

In Agile projects, the initial attention goes
to user stories (‘epics’) on large chunks of
functionality. They arise from direct con-
tacts between the product owner and his
immediately surrounding business stake-
holders, and are collected on the product
backlog at the start of a project. In release
and sprint planning, and in grooming ses-
sions, sprint teams frequently discover that
these kinds of user stories are too high-
level to be realized in a single sprint. They
have to be split up into more detailed user
stories, containing smaller pieces of func-
tionality, before they can be added to the
sprint backlog of a certain sprint. By the
nature of their specific format, user sto-
ries tend to concentrate on functional so-
lution aspects. Acceptance criteria mostly
regard additional detailed functionality or
obvious non-functional requirements from
a direct business view; constraints tend to
be overlooked, underestimated or taken
for granted.

As a consequence, an Agile project usually
starts with an imperfect and volatile set of
core requirements, which is gradually de-
tailed and upgraded during the course of
the project as more information becomes
available in the sprints. User stories are
refined to describe them in more detail
and new acceptance criteria are added
on non-functional requirements and con-

4/2014 234/20144/2014

SOFTWARE ENGINEERING

straints. This is the consequence of inten-
sified contacts by the whole sprint team
with a broader group of stakeholders (ex-
ceeding the direct business stakeholders)
and the feedback received from them. An-
other common feature is that inconsisten-
cies and conflicts between requirements
and between stakeholders come to the
surface, which first have to be resolved
before a certain piece of software can be
developed. In addition, the integration of
new parts into the existing system may
lead to the discovery of new requirements.
Taking it all together, during every sprint
the team learns more about the system in

an exploratory way and will discover nec-
essary additions and changes on require-
ments; new user stories and acceptance
criteria are added to the product back-
log and the sprint backlog of the current
sprint is de-scoped to account for these
changes.

Agility in its very nature is to be open for
changes. The Agile manifesto explicitly
welcomes them during a project, as it al-
lows the team to fine-tune the system to
the ever-changing environment instead of
developing a system on a fixed situation
at the start of it. However, change and in-
stability during a single sprint will threat-
en the success of working software at the
end and reduce the velocity of the team.
Therefore, the quality (complete, clear,
consistent, agreed, …) of user stories and
acceptance criteria should be assured be-
fore they can be selected for elaboration
in a certain sprint, at least to a level that
allows for concrete planning and task defi-
nition.

Testing

The requirements defined in user stories
and acceptance criteria serve as the basis
for design, coding and integration of the
software to be developed and the user pro-
cesses to be supported. At the same time,
they are used to develop test cases for the
verification and validation of the software
and for preparing the product demo.

Ultimately, testing is about gathering in-
formation on the quality of a software sys-
tem. Testing concentrates on two quality
aspects: ‘Is the system built right?’ (con-
formance to specifications) and ‘Is the
right system built?’ (fitness for use). Tes-
ters use the requirements as an input to

24 4/20144/2014

THE RELATION BETWEEN REQUIREMENTS AND TESTING IN AGILE PROJECTS

investigate both questions and execute
their tests for providing the answers. With
these answers, the business can mitigate
risks concerning the actual use of the soft-
ware in production.

More detailed and more elaborated re-
quirements permit the tester to develop
and execute tests that provide better in-
formation on the quality and more accu-
rate risk mitigation for the stakeholders.
In an ideal world, the starting point for the
tester would be a single complete and con-
sistent set of requirements, at the same
level of detail and abstraction, consisting
of user stories with the functional require-
ments and related acceptance criteria with
additional details on functionality, non-
functional requirements and constraints.
In combination with a risk assessment,
the tester then can prioritize and develop
test conditions and test cases to investi-
gate the relevant quality aspects of the
system.

In Agile projects, documentation is lean
(‘just enough’) and time is short. If, at
the beginning of a sprint, requirements
are incomplete, unclear, inconsistent or
not agreed between stakeholders, testing
may be unable to provide enough informa-
tion on the quality of the software in time.
Sprint teams try to avoid this by repeated
grooming the product backlog to improve
the quality and by carefully selecting the
user stories for the next sprint during the
sprint planning phase, but might fail in do-
ing so. If testing starts from the assump-
tion of high quality user stories, defects in
the software will be discovered during the
sprint, but flaws in the users stories may
be overlooked.

The same user stories and acceptance cri-
teria serve as an input for the developers
who build the software. They are confront-
ed with the same flaws in the user sto-
ries, but they are in a position to ‘fill in the
gaps’ by adding their own interpretation
of detailed requirements. From the focus
of the developers on delivering working
software, this kind of additional require-
ments often relate to detailed functionality
for end users and to technical constraints.
When sprint teams work from the idea of
a fixed sprint backlog, these additions will
not be made explicit in updates of user
stories and acceptance criteria, and are
easily missed in testing.

The “Frog” model

In order to describe te relationship be-
tween Requirements, Creation and Accep-
tance, we developed the ‘Frog’-model to
illustrate the development life cycle in an
Agile context.

At the left hand side, we discern the Re-
quirements part, in which a set of users
stories and acceptance criteria is estab-
lished and collected on the product back-
log, including a requirements setup and
prioritisation of the overall user stories in
an end-to-end or Release theme. The defi-
nition of these requirements on all levels,
and the tracking and tracing of it, is the
responsibility of the business, represented
by the product owner. In large organiza-
tions this will be a challenge, often as-
signed to a team of architects.

The right hand side is the Acceptance part,
where the business decides on the use of
the developed software. Once again, the
business is reponsible for it, with the prod-

4/2014 254/20144/2014

SOFTWARE ENGINEERING

uct owner in the role of representative of
the sprint team, ‘selling’ the solution. Tes-
ters facilitate this part, as the business
decision will heavily rely on quality infor-
mation provided by them. In every sprint,
there is a demo, in which the product
owner is responsible for the acceptance of
the final result of the sprint at hand. Apart
from and exceeding that, a group of us-
ers may do their own acceptance itself, in
the form of a test activity, showing that
the delivered system adeqately supports
their work. This might be done as part of
the iteration, but that is not always pos-
sible, for instance in the case of purchased
standard software. Paramount, the end-
to-end and overall non functional issues,
like performance, security, et cetera, are
best tested in a more stable, overall end-

to-end / system-of-systems environment.
This is what testers should facilitate and
draw the product owner’s and architect’s
attention to.

At the bottom of the model, the Creation
part is about the (technical) realization of
the software, based on the requirements.
This is a sequence of Agile iterations (or
sets of iterations, SCRUM-of-SCRUMS) that
lead to working software products that can
be demo-ed. This creation activity is the
responsibility of IT as delivery. Since each
sprint team is responsible for their own it-
eration result, the final solution is usually
system integration- or acceptance tested
as a separate activity. In many organiza-
tions this is an unexplored part of system
development.

THE FROG MODEL

26 4/20144/2014

THE RELATION BETWEEN REQUIREMENTS AND TESTING IN AGILE PROJECTS

Tester’s involvement

In many Agile projects, team members
with a testing background serve as the
quality conscience of the team. Their geat-
est value lies in their broad and indepen-
dent view on the quality of the system as a
whole and their ability to demonstrate this
quality or the lack of it.

In the Creation part of the Frog-model,
testers participate in sprint teams, sup-
porting the team in component and inte-
gration tests, and developing and execut-
ing system and regression tests. In the
Acceptance part, they support and guide
end users in acceptance tests, develop
and execute end-to-end tests, participate
in preproduction tests, et cetera. This may
be done as part of the sprints, or as a sep-
arate track apart from these.

Since the initial requirement setup in the
creation of user stories is done by the
product owner, the involvement of testers
in the Requirements part is usually limit-
ed. In subsequent grooming, defining and
redefining during the Creation part, tes-
ters do participate, but as stated before,
the requirements at that stage are heavily
focused on functional aspects of the cho-
sen solution. The quality of the user sto-
ries and acceptance criteria at the start of
a sprint then will be suboptimal, which is
inherent to the nature of agile and may
entail the issues mentioned.

Earlier involvement of testers in the Re-
quirements part will assure the qual-
ity level of users stories and acceptance
criteria as an input for the Creation part,
thus enabling IT to efficiently develop the
software without unnecessary disturbanc-
es underway, and guaranteeing a smooth
acceptance.

4/2014 274/20144/2014

SOFTWARE ENGINEERING

Testers can contribute to the Requirements
part in several ways.

Requirements sources•	
Testers have contacts with a much broad-
er circle of stakeholders than the product
owner does. While the product owner has
a focus on direct business contacts, tes-
ters will identify additional requirements
sources from IT, competitors, customers,
governmental organizations, adjacent sys-
tems, legislation, et cetera.

Level of detail and abstraction•	
Testers will recognize differences in level
of detail and abstraction within a set of
user stories. They are able to propose a
suitable hierarchy.

Consistency and agreement•	
Testers can identify gaps, overlaps and in-
consistencies within a set of user stories,
and may notice (hidden) conflicts between
stakeholders and within requirements,
that must be resolved before they can be
realized in one and the same system. They
can help to harmonize a collection of re-
quirements from different sources into in
single consistent set.

Non-functionals and constraints•	
Testers will pay proper attention to a broad
pallet of non-functional quality characteris-
tics and constraints, leading to a complete
set of detailed users stories and accep-
tance criteria at the start of the Creation
part.

Testability•	
In their own interest, testers will check
user stories and acceptance criteria for
testability. Good testability will make it
easy to demonstrate the quality of the de-
livered software.

Conclusion

The Requirements part is the most chal-
lenging part of Agile projects. Usually, the
requirements are derived by a business
representative in the role of product owner
and collected on a product backlog in the
form of user stories. Biased focus and lack
of requirements engineering skills may re-
sults in an initial backlog with flawed user
stories. Typically, such user stories con-
centrate on single sprint functionality and
neglect non-functionals, non-technical
constraints and end-to-end integration is-
sues. This causes issues and delays during
the subsequent (technical) Creation part
and controverses in the Acceptance part.
Agile projects will benefit from the involve-
ment of testers right from the start in as-
suring the quality of the requirements.
This was one of the critical success factors
in the original Waterfall model. It is still
important in the Agile situation, especial-
ly when working in an Agile way on large
projects. In an independent role, testers
can act as a bridge between business and
IT, and between business stakeholders and
other concerned parties, improving com-
munication and assuring overall quality.
An experienced tester with sufficient
knowledge of requirements engineering
can support the development and growth
of a complete set of clear, consistent, and
agreed requirements that serves efficient
development of effective IT systems, thus
guaranteeing the cohesion between the
Requirements, Creation and the Accep-
tance parts of the Frog-model.
 

28 4/20144/2014

THE RELATION BETWEEN REQUIREMENTS AND TESTING IN AGILE PROJECTS

AUTHOR

Hans van Loenhoud

As a senior consultant at Polteq, the Netherlands, Hans van
Loenhoud provides test consultancy to customers all over the
world and acts as a trainer in many courses on software testing,
especially the courses of the ISTQB. He wrote several books
and articles on software testing and presented at testing con-
ferences in the Netherlands and abroad.

Hans is also engaged in requirements engineering, as require-
ments are the starting point for all testing activities. He devel-
oped a Foundation Level course based on the IREB body of
knowledge and helped dozens of students to pass the CPRE
exam. Hans is chairing the international workgroup for the IREB
Advanced Level Elicitation and Consolidation syllabus.

Erik Runhaar

Erik Runhaar is working on testing since 1996 in different types
of organizations, ranging from large multinationals in ERP to
smaller companies in health care and health insurance in the
Netherlands.

Erik is a senior consultant at Polteq. He is accredited trainer
for ISTQB Foundation (including Agile Tester Add-on) and Ad-
vanced level courses as well as for the iSQI Certified Agile Test-
er. Erik is also involved in development projects, and in coach-
ing and mentoring people in testing activities. Erik shared his
ideas on testing in articles ranging from Test strategy to Agile
testing issues in several testing papers.

4/2014 294/20144/2014

SOFTWARE TESTING

Seretta Gamba
 Dorothy Graham

Process Patterns
in Test Automation

Introduction

It’s now a couple of years that we have
been collecting test automation patterns
in a wiki [testautomationpatterns.wiki-
spaces.com. The wiki is read only. To con-
tribute please ask for an invitation.]. We
have classified them as process, manage-
ment, design or execution patterns. We
have also given quite a few tutorials about
them at various conferences. Generally we
end up speaking only about management
or design issues or patterns. Execution is-
sues are usually a side effect of poor au-
tomation design, so in this paper we want
to take a closer look at process issues and
patterns.

Process patterns

Process issues are often underestimated:
it is often difficult to recognize them from
the inside of a project, particularly if the
company culture does not support test au-
tomation or processes that would help au-
tomation. Test automation works best as
a team effort with testers, developers and
automators working hand in hand. A typi-
cal process issue is missing or poor com-
munication between different departments
(INADEQUATE COMMUNICATION). Other
problems arise when nobody cares about
data or script reuse (DATA CREEP, SCRIPT
CREEP), documentation (INADEQUATE
DOCUMENTATION), revision control (IN-
ADEQUATE REVISION CONTROL) and so
on. These kinds of issues can kill even a
well-designed and well managed automa-
tion effort.

Starting with INADEQUATE COMMUNICA-
TION, let’s examine the most important is-
sues more in depth.

30 4/20144/2014

PROCESS PATTERNS IN TEST AUTOMATION
INADEQUATE COMMUNICATION

Issue Summary
This issue covers two frequently recurring problems:

Testers don’t know what automation could deliver and the test automation •	
team doesn’t know what testers need
Developers don’t understand, don’t know or don’t care about the effect of •	
their changes on the automation

Category
Process

Examples
Test cases that should be automated are written very sparingly because „eve-1.	
rybody knows what you have to do”... only automators do not
Automators need help from some tester or specialist, but that person is not 2.	
available or doesn’t have time
Testers do a lot of preparations to do manual testing that could be easily au-3.	
tomated if only the automators knew about it
Testers, developers and automators work in different buildings, cities, time 4.	
zones, or countries
Developers change the Software Under Test (SUT) without caring if it disrupts 5.	
the automation or makes it harder

Questions
Are testers and automators on the same team? If not, why not?•	
Do developers notify automators when they want to use new components?•	
Do automators report to development which components they cannot dri-•	
ve?
How often do team members meet personally? How often in telephone con-•	
ferences / live meetings?
Do team members know each other? How about time or language differen-•	
ces?
Do team members with the same role have the same experience / know-•	
how? Do they speak the same „language”?

Resolving Patterns
Most recommended:

SHARE INFORMATION: this pattern is a no brainer for big and small automa-•	
tion efforts. Use it!
WHOLE TEAM APPROACH: if your development team uses an agile process •	
and you apply this pattern, you will not encounter this issue

Other useful patterns:
GET ON THE CLOUD: This pattern is especially useful if you are working with •	
a distributed team

4/2014 314/20144/2014

SOFTWARE TESTING
WHOLE TEAM APPROACH

Pattern Summary
Testers, coders and other roles work together on one team to develop test au-
tomation along with production code.

Category
Process

Context
This pattern is most appropriate in agile development, but is effective in many
other contexts as well. This pattern is not appropriate if your team consists of
just you.

Description
Everyone on the development team collaborates to do test automation along
with production code. Testers know what tests to specify, coders help write
maintainable automated tests. Other roles on team also contribute, e.g., DBAs,
system administrators.

Implementation
If you are doing agile development, you should already have a whole-team ap-
proach in place for software development, testing and test automation.
If you are not doing agile, it is still very helpful to get a team together from a
number of disciplines to work on the automation. In this way you will get the
benefit of a wider pool of knowledge (SHARE INFORMATION) which will make
the automation better, and you will also have people from different areas of the
organisation who understand the automation.

Potential problems
If people are not working on the automation as a FULL TIME JOB, there may
be problems as other priorities may take their time away from the automation
effort.

If your developers are using an agile de-
velopment process the pattern to apply to
solve such a problem is definitely WHOLE
TEAM APPROACH.

Developers should already be writing au-
tomated unit tests, so they should also be
open to help automate the system tests.
Also being on the same team will spare
you problems like when developers change
something that disrupts the tests and you
find out only when your automated tests
suddenly all fail. Another advantage is
that you can find out at a very early de-

velopment stage if some used component
is not supported by your automation tools.
In this case you will be able to find some
solution:

You convince the developers to change •	
the component
You find a new tool that can support it•	
Together you find a way to work around •	
the problem so the automation can use
the component

The pattern SHARE INFORMATION is good
in any type of context.

32 4/20144/2014

PROCESS PATTERNS IN TEST AUTOMATION
SHARE INFORMATION

Pattern Summary
Ask for and give information to managers, developers, other testers and custo-
mers.

Category
Process

Context
This pattern is appropriate when you have to communicate with management,
testers or developers, and when you have new people coming onto the team.
This pattern is not appropriate when you are working alone on issues that you
have already mastered completely.

Description
There are many people who are involved with test automation, and they have
different needs for what they need to know. But they won’t know about things
unless they are told, so you need to share relevant information with them at
appropriate times.

Implementation
Some suggestions:

Keep management informed on the progress of the test automation project. •	
Find out what metrics they need, explain which can be easily collected and
which not, and provide regular overviews in a format that is most appropriate
for them
Have managers tell you what they specifically expect from test automation. •	
In this way you can notice quickly if they have UNREALISTIC EXPECTATIONS
and can inform them accordingly
Speak with other people about what you are doing: explaining something •	
often leads to new ideas, yours or the people you are talking with
ASK FOR HELP when you have a problem or a question: you should never •	
ponder too long on some issue, other people may have already solved just
the same question
Listen to testers or developers. Ask why they do something and why they do •	
it as they do. If you find out what they really need, you can support them
even better than you were planning
Ask developers to keep you informed when they make changes to the Sof-•	
tware Under Test (SUT) that affect test automation
After you have obtained some concrete results CELEBRATE SUCCESS •	
Speak also about your failures: people will be thankful if in that way they can •	
LEARN FROM MISTAKES

Communication also includes reports, demonstrations, Wikis, billboards etc. Use
what is best known in your company.

4/2014 334/20144/2014

SOFTWARE TESTING
SHARE INFORMATION

Potential problems
Communication can easily be misinterpreted, especially emails.

Communication needs to be at the right level for the recipient and tailored for
the audience, or it will be ignored or worse.

Actually the pattern SHARE INFORMA-
TION is not only valid for test automation!
It would be useful in a pure development
or exploratory test context. It would give
also good value at Christmas time with
your family!

Now let’s explore some other important
process issues, DATA CREEP and SCRIPT
CREEP. The amount of data or scripts keeps
growing mainly because instead of reus-
ing them people create new ones all the
time. Note that the problem here is not
the amount of data or scripts, it’s not re-
using them and writing doubles instead!

34 4/20144/2014

PROCESS PATTERNS IN TEST AUTOMATION

DATA CREEP

Issue Summary
There are countless data files with different names but identical or almost iden-
tical content

Category
Process

Examples
Nobody knows what is being used and where, so nobody wants to be respon-1.	
sible for deleting eventually needed data
To edit or remove the data files is too much work: one would have to look up 2.	
all the places where they are used and change the referrals. If files are simi-
lar rather than identical, a unified file would have to be created

Questions
Is the data documented?•	
Are there standards regarding naming and documentation?•	
Who creates the data? How? Who uses it?•	

Resolving Patterns
Most recommended:

GOOD PROGRAMMING PRACTICES•	
MAINTAINABLE TESTWARE•	
MAINTAIN THE TESTWARE•	
MANAGEMENT SUPPORT: You will need this pattern to be able to change the •	
current bad behaviour
REFACTOR THE TESTWARE•	

You should already be applying these patterns. If not, do it!

Other useful patterns:
GOOD DEVELOPMENT PROCESS: apply this pattern if you don’t have a pro-•	
cess for developing test automation. Apply it also if your process lives only
on paper (nobody cares)
LEARN FROM MISTAKES: apply this pattern to turn mistakes into useful ex-•	
periences
KILL THE ZOMBIES: Apply this pattern for a start•	
DEFAULT DATA: use this pattern if your tests use a lot of common data that •	
is not relevant to the specific test case
DOCUMENT THE TESTWARE: you should be already applying this pattern. •	
Retro fixing documentation is quite an effort. Do it in the future for all new
projects and every time you have to update something old
KEEP IT SIMPLE: Always apply this pattern!•	

4/2014 354/20144/2014

SOFTWARE TESTING
SCRIPT CREEP

Issue Summary
There are too many scripts and it is not clear if they are still in use or not.

Category
Process

Examples
It takes so much time to check if a script is already available that testers or 1.	
automators would rather write a new one instead. This means that there are
a lot of very similar scripts.
Nobody „refactors” the scripts so that after a time some fail consistently and 2.	
are not executed any longer.
It isn’t possible to check which scripts are actually in use.3.	

Questions
How are scripts documented?•	
Are there standards regarding naming and documentation?•	
Who writes the scripts? Who uses them?•	
Is anyone charged with reviewing the relevance and usefulness of the scripts •	
at regular intervals?

Resolving Patterns
Most recommended:

GOOD PROGRAMMING PRACTICES•	
MAINTAINABLE TESTWARE•	
MAINTAIN THE TESTWARE•	
MANAGEMENT SUPPORT: You will need this pattern to be able to change the •	
current bad behaviour
REFACTOR THE TESTWARE•	

You should already be applying these patterns. If not, do it!

Other useful patterns:
GOOD DEVELOPMENT PROCESS: apply this pattern if you don’t have a pro-•	
cess for developing test automation. Apply it also if your process lives only
on paper (nobody cares)
LEARN FROM MISTAKES: apply this pattern to turn mistakes into useful ex-•	
periences
KILL THE ZOMBIES: Apply this pattern for a start•	
DOCUMENT THE TESTWARE: you should be already applying this pattern. •	
Retro fixing documentation is quite an effort. Do it in the future for all new
projects and every time you have to update something old
KEEP IT SIMPLE: Always apply this pattern!•	

36 4/20144/2014

PROCESS PATTERNS IN TEST AUTOMATION

Did you notice that these issues are al-
most identical? That they suggest almost
exactly the same patterns as solution? The
reason of course is that the underlying
causes are the same in both cases:

There are no conventions or standards •	
on how to name either scripts or data
(or if there are they are not applied).
There is no rule where to save the data •	
or the scripts to make finding them
easier (again if there is, nobody seems
to care)
There is no standard template within a •	
document for describing data or scripts
so that the information is easily search-
able
There is no way to find out quickly •	
where they are being used when you
would like to change something and are
not sure of the possible side effects

Usually nobody has time and so it’s much
quicker and easier to create something
new than to look if it’s already there, try
to understand if it could be reused, and
adapt it (risking disrupting something al-
ready running…).

This behaviour is building up a workload,
often referred to as “technical debt”, which
if not addressed, can bring down an entire
automation effort, As with financial debt,
if you don’t keep it under control, it can
ruin you!

It is quite difficult to change such behav-
iour once it has taken root. Also often it is
associated with some old hand who knows
exactly where to find things all along. New
team members are discouraged to try to
document or reuse data or scripts out of
fear of disrupting some existing tests. Fi-
nally when the old hand retires all that
stuff will probably get thrown away and
the team starts again from scratch. To
avoid this you will definitely need to apply
the management pattern MANAGEMENT
SUPPORT.

MANAGEMENT SUPPORT

Pattern Summary
Earn management support. Managers should only support sound and well-rea-
soned activities, so we need to work at selling the idea initially and then keep
them up-to-date with progress and issues.

Category
Management

Context
This pattern is applicable when test automation is intended to be used by many
people within an organisation.
This pattern is not applicable for one person beginning to experiment with a tool
to see what it can do.

4/2014 374/20144/2014

SOFTWARE TESTING
MANAGEMENT SUPPORT

Description
Many issues can only be solved with good management support.
When you are starting test automation, you need to show managers that the in-
vestment in automation (not just in the tools) has a good potential to give real and
lasting benefits to the organisation.

In an ongoing project, inform regularly on the status and draw special attention to
any success or return on investment. You still need to have good communication and
a good level of understanding of current issues from management.

Sometimes a single incident can be more convincing than a large set of numbers, for
example if a recurring bug is found by an automated regression test for a user that
had complained about this same bug twice before.

Implementation
Some suggestions when starting (or re-starting) test automation:

Build a convincing TEST AUTOMATION BUSINESS CASE. Test automation can be •	
quite expensive and requires, especially at the beginning, a lot of effort.
A good way to convince management is to DO A PILOT. In this way they can ac-•	
tually “touch” the advantages of test automation and it will be much easier to win
them over.
Another advantage is that it is much easier to SELL THE BENEFITS of a limited pi-•	
lot than of a full test automation project. After your pilot has been successful, you
will have a much better starting position to obtain support for what you actually
intend to implement.

Some suggestions for on-going test automation:
If you have INADEQUATE SUPPORT you may have to free some people from their •	
current assignments.
If you have INADEQUATE TOOLS you may need to invest in new tools or build or •	
revise your TEST AUTOMATION FRAMEWORK.
In these cases you may need to SELL THE BENEFITS in order to convince mana-•	
gement that the investment will be worthwhile.

Potential problems
It is almost equally important to set realistic expectations about what the test auto-
mation project can deliver. UNREALISTIC EXPECTATIONS can lead to disappointment
and frustration and you can lose management support just when you need it most.
Another problem that can arise is that the manager talks about supporting you and
claims to support your efforts. But when you need to take some additional time or
use additional resources, then „sorry, they are not available”. This is not true sup-
port, but „lip service”.

It is also possible to inadvertently set UNREALISTIC EXPECTATIONS by being overly
enthusiastic about what can be accomplished early on in automation. It can be easy
to show good results when you haven’t yet encountered any of the problems that will
occur later, such as the cost of maintaining the automated tests when the software
under test is changed.

38 4/20144/2014

PROCESS PATTERNS IN TEST AUTOMATION

Next steps

Having management support will enable
you to apply patterns like KILL THE ZOM-
BIES that tells you to remove all data or
scripts that are not in use, or REFACTOR
THE TESTWARE which gives suggestions
about eliminating doubles, documenting
etc. These activities require quite a lot of

effort and without support from manage-
ment you will not be able to get the neces-
sary resources or time. Also, with support,
you will be able to introduce the GOOD
PROGRAMMING PRACTICES and GOOD
DEVELOPMENT PROCESS that will help you
avoid the same issues in the future.

AUTHORS

Seretta Gamba

Seretta Gamba has over 30 years’ experience in software de-
velopment. As test manager at Steria Mummert ISS GmbH she
was charged in 2001 with the improvement of the test auto-
mation process. After studying the current strategies, she de-
veloped a kind of keyword-driven testing and a framework to
support it. In 2009 the framework was extended to support also
manual testing. Seretta referred about it at EuroSTAR and got
the attention of Dorothy Graham that subsequently invited her
to contribute with a chapter in her new book (Experiences of
Test Automation). On reading her bonus book Seretta noticed
recurring patterns in the solution of automation problems. After
gaining Dorothy’s support, she is currently intent on catalogu-
ing Test Automation Patterns.

Dorothy Graham

Dorothy Graham has been in software testing for 40 years, and
is co-author of 4 books: Software Inspection, Software Test Au-
tomation, Foundations of Software Testing and Experiences of
Test Automation. She has been on the boards of conferences
and publications in software testing, was a founder member
of the ISEB Software Testing Board and was a member of the
working party that developed the ISTQB Foundation Syllabus.
She was awarded the European Excellence Award in Software
Testing in 1999 and the first ISTQB Excellence Award in 2012.
She is currently working on the Test Automation Patterns wiki
with Seretta Gamba.

4/2014 394/20144/2014

SOFTWARE ENGINEERING

Bogdan Bereza

Two sister acronyms:
QA and BPR

What we have in common

Business process re-engineering (BPR) is
an interesting discipline for QA engineers.
For example, it has many crucial activities
in common with business analysis. Actual-
ly, business process change, is what should
often take place after business analysis,
instead of system development. If, due to
customer’s misconception, they take place
in parallel, this leads to many interesting
phenomena, including the notorious scope
creep.

Poor business process may destroy the
best efforts of software engineers, when
a potentially good software cannot be
used properly in hostile business envi-
ronment. For example, the stock-market
internet bubble crash at the beginning of
this century, was not caused by using XP
end other not-so-concerned-about-the-
requirements development methods, but
because the need for these methods had

been created by bad, cowboy, irresponsi-
ble business approaches.

Last but not least, testing a business pro-
cess, and then “debugging” it, that is look-
ing for the reasons why it fails, has much
in common with software testing.

The story I describe here, happened to me
almost symbolically the day after I had
taught a three-days training course in BPR
in Rome. It is a wonderful example of how
business processes fail, as well as of how
social, cultural and economic environment
create conditions in which bad business
practices can thrive.

So, after teaching this course, I was to
go back to the airport and fly back home.
What happened then, was a brilliant show
why BPR is necessary, why it is not the
same as introducing IT / Web support, and
why it is so very interdisciplinary.

40 4/20144/2014

Bad UX, or user experience

Already on arrival some days earlier, I was
rather taken aback when my shuttle bus
stopped somewhere in the middle of the
rather crowded and badly-lit street, at a
place not easily recognizable as any bus
stop, except for a long queue of nervous-
looking people with suitcases, and I heard
a laconic info from the bus driver “Termini”,
the name of the main and biggest railway
station in Rome. No railway station was
there anywhere to be seen, but – thanks
heaven for Google Maps and its Street
View! – I managed to recognise a rather
morose and ugly wall of a huge building as
the station building. Naturally, this expe-
rience made me somewhat apprehensive
before my return journey.

Reassuring second experience

To feel safer, I searched the web for ideas
and found a professional-looking web site
of a shuttle bus company “Terravision”
(http://www.terravision.eu/).

Wow, I could really buy now my bus ticket
on-line, thus avoiding the scary prospect
of perhaps having to buy my ticket from
the bus driver or his assistant. Why was
it scary to me? As the bus company’s per-
sonnel did not wear any uniforms, which I
had learned already on arrival, I was afraid

TWO SISTER ACRONYMS: QA AND BPR

This is the first interesting lesson of the story: the effect of an
even slightly bad first experience has very devastating and lasting
effect of how a product or a service is later seen. So, spiral deve-
lopment and prototyping in all respect, beware of creating such a
lasting impression by demonstrating a very bad first system ver-
sion to customers too early.

I would not be able to recognize the right
person easily (now I know I could – the
assistant by shouting, the driver by smil-
ing sarcastically at the stupid people at-
tempting to board his bus).

So, until then I had already experienced a
number of seriously “broken windows” (see
Michael Levine, http://www.amazon.com/
Broken-Windows-Business-Smallest-Rem-
edies/dp/0446698482), seriously damag-
ing my user experience. Lack of recogniz-
able uniforms. Unprofessional behaviour
– the assistant smoke a cigarette while
talking to passengers. Badly lit location/
venue/bus stop. No markings on where I
was, lack of helpful information, the sight
of obviously stressed people, queuing. Too
bad!

Back to Rome. I was then still ready to re-
vise my first negative impression, and I was
well on my way to do it, when I found Ter-
ravision’s sensible and well-organized web
site, and could buy their ticket in advance
without any unnecessary hassle, which I
had by then learned to expect from shut-
tle buses’ notorious customer interface.
A warning sign, though: the necessity to
exchange my ticket for a separate board-
ing card before being allowed to take the
bus looked like a rather crazy and unnec-
essary complication, as the ticket I bought

4/2014 414/20144/2014

SOFTWARE ENGINEERING
MANAGEMENT SUPPORT

Product quality, whether a
product is a service or a physi-
cal entity, does not hang in
empty space, it is tightly con-
nected to everything around
it. Therefore, QA in general
and testing in particular, may
easily pay too much attention
to technical details, instead of
the complete user experience,
or UX. The conclusion is not
that technical, functional and
extra-functional (yes, I hate
the misleading and stupid term
“non-functional”) quality is not
important. Yes, it is a neces-
sary, but insufficient precon-
dition of high UX.

Radek Hofman conducted a
number of very revealing ex-
periments in this area. They
show clearly, and in a statisti-
cally significant manner, which
is a rare occurrence in anecdote-prone
software quality engineering, two impor-
tant phenomena:

“Software quality perception” (http://•	
www.academia.edu/5515172/Soft-
ware_Quality_Perception) tells you how
simple rumours (oh so easy in the age
of Facebook, Instagram, twitter and
other rumour-spreading and brain-kill-
ing social media) can dramatically influ-
ence the judgement passed on quality
by professional testers.
“Behavioral economics in software •	
quality engineering” (http://www.aca-
demia.edu/5515175/Behavioral_eco-
nomics_in_software_quality_engineer-
ing) tells you how “history effect” – the
influence of your first bad experience
of a product, will stubbornly bias your
perception of it.

Finally, if you’d rather have a model to see
similar effects on a diagram, welcome to
Kano model.

www.kanomodel.com

42 4/20144/2014

TWO SISTER ACRONYMS: QA AND BPR

was valid for a specific hour, but what the
hell, I thought, you must not expect per-
fection when you buy a 4-euro service, not
a Rolls-Royce.

When I arrived next morning, on 20 No-
vember 2014 – well before the assigned
time, to be sure – at the well-advertised
Terravision Café at Termini, I was rather
shocked again, when I saw a long commu-
nist-style line of nervous-looking people
queuing to buy their tickets, thoroughly
mixed up with people wishing to exchange
their tickets for boarding cards. Obviously,
the whole system of tickets and boarding
cards was extremely clumsy, totally un-
necessary, and awkward for everybody,
both customers and for the rather angry-
looking (tut-tut! Too sure about their jobs,
perhaps?) girls inside the ticket booth.
Yes, there was an A4-format paper telling
those with tickets to “jump the queue” be-
fore those wanting to buy tickets. An obvi-
ous failure of localization: an attempt to
impose a rather peculiar Italian habit on
pre-dominantly international customers.

The whole queue thoroughly blocked the
only entrance to Terravision Café inside.
I started expecting the worst, but the ex-
change process ticket-for-boarding-card
went surprisingly painless for me. I could
not help overhearing, however, an elderly
Swedish couple enquiring about the pos-
sibility of ensuring tickets for the next day,
only to be told – in a rather brusque and
unfriendly manner (tut-tut!) – by one of
the girls behind the counter – that it was
not possible longer than 30 minutes be-
fore bus departure. She did not mention
the possibility to use their web site; why
bother.

Clutching my precious boarding card in my
somewhat sweaty palm, I endured without
further ado being told that my bus was 20
minutes late, thanking business process
analysis gods for deciding to go before due
time, so I still had a lot of time.

-	 Where’s the bus stop? – I enquired.
-	 Just outside! – was the answer. Not
a sign of a bus-stop sign there, but a tell-
tale, suitcase-armed queue made any
doubts obsolete.

I joined the queue, wondering how to tell
the end of the queue from its head, and
how we’d be able to sort those willing to
travel to Fumicino airport from those Ci-
ampino-heading (no signs, no information
boards, of course).

Finally, a bus to Fiumicino arrived. As I
had already noticed a few days before, the
fact that people exited the bus at exactly
the same place as those wishing to en-
ter queued, beautifully added to general
chaos and irritation. I was happy for be-
ing observant, too, since the only indica-
tion on which way the bus was to go, was
on its front, while its sides were decorated
by a beautiful, but rather confusing sign
“Rome <-> Fiumicino, Rome <-> Ciam-
pino”. Good idea, this! You really can, with
some effort, design a customer process in
the worst possible way! A gentle touch of
very stupid and confusing user interface
makes a mildly bad user process into real
horror!

And horror did start immediately, as rath-
er restive and desperate passengers at-
tempted to enter the bus. Some had no
tickets, believing they could buy them at
the bus. Some had not exchanged their

4/2014 434/20144/2014

tickets for the required boarding cards,
some were not sure to which airport the
bus went, and some were unsure what to
do with their luggage. The bus assistant
immediately resorted to shouting, not so
much to be heard, as to show his author-
ity and passengers’ stupidity. A good thing
was, he was too busy shouting to be able
to smoke, or perhaps he was a non-smok-
er, I couldn’t possibly know.

Still shouting, he made, however, a very
sensible move of telling the people who
wanted to go to Ciampino, to form a sep-
arate queue. This could, possibly, give a
thinking person a nice BPR-idea to actually
mark two separate queues on the bus stop,
and avoid some of the hassle in the future,
but I do not think there was any thinking
Terravision representative around. If there
was, they might had discovered this ge-
nius solution many years before… Or sim-
ply, as is so often the case at IT compa-
nies, too, especially as software testers are

concerned, the employees were expected
to perform the duties assigned to them in
an obedient manner, instead of arrogant-
ly stepping on management prerogatives
and proposing improvements. Good bye,
Kaizen! Good bye, TQM! Good bye, Toyota
system! Good bye, Juran, good bye, Dem-
ing! Terravision has still much to do be-
fore they catch up with the ideas that were
known and widespread as early as forty
years ago!

The bus to Fiumicino left, we Caimpino
enthusiasts waited for our twenty-minute
late bus to arrive. I decided I’d take a taxi
when it was 09:40 (the bus would be 50
minutes late by then). As minutes went
by, I could enjoy watching the growing
restlessness of those waiting, and the to-
tal absence of any attempts to inform us
about the situation from the nearby Ter-
ravision personnel. While I departed in the
direction of the taxi stand, I could hear a
Terravision lady shouting (they are good

SOFTWARE ENGINEERING

44 4/20144/2014

at shouting at this company!) that the bus
would arrive later still because of traffic.
You may be interested to know, that on
my way to the airport by taxi, I was told
by the driver, that traffic from Ciampino to
Rome was unusually light this morning… A
blatant lie, too!

So this is the end of my Terravision sto-
ry, but it’d be incomplete about adding
some views on the feasibility of trying to
achieve real BPR in any not market-driven
situation. Socialism, as some of us can re-
member, was extremely adept at business
process degeneration, rather than any im-
provement.

As I arrived at the nearby taxi stand, I was
utterly surprised to find passengers waiting
for taxis, not the other way round! Years
and years of my age flew off my back and I
felt thirty five years younger, in the middle
of some communist era Eastern Europe
city, where taxis, as any services, were
scarce, and those in the power to bestow
them on eager customers were arrogant,
reckless and unfriendly. I gathered imme-
diately that in Rome, taxi drivers’ corpo-

TWO SISTER ACRONYMS: QA AND BPRTWO SISTER ACRONYMS: QA AND BPR

AUTHOR

Bogdan Bereza

Bogdan has worked with SQA for 25 years, for Swedish, Ger-
man and Polish companies. He was the pioneer of ISEB Foun-
dation, ISEB Practitioner, ISTQB Foundation and ISTQB Ad-
vanced in Sweden and in Poland.

Bogdan authored three books on SQA, translated two and pub-
lished a number of articles in English, in Polish and in Swedish.
He was involved in starting Swedish SAST (1995) and SSTB
(2000), Polish SJSI (2003) and Polish SPIN (2006-2007).

ration alias trade union alias mafia must
have won the privilege to limit the pos-
sibility to join this trade, thus ensuring for
themselves endless monopoly benefits. In
spite of my ex-communist training, it took
me a while of patient and fruitless waiting
first at the end of the line (the taxis then
stopped at its head), then at its head (the
taxis had by then switched their stopping
habits), before I got back my uncanny ex-
communist instincts and ran directly to
grab a taxi before it had even come to the
curb.

Here my BPR-Rome story ends. Ciao, Roma!
I’ll surely come back, yours is a beautiful
city. Some BPR may make it a better place
to live, and to visit, though! Terravision
(what a f…ing arrogant name!), I hope you
will pay my back four euro you stole form
me, but anyway, I and probably all other
passengers, too, would rather pay one or
two euro more, and get serious and bet-
ter service in exchange. So that you can
have an extra bus in reserve, in case of
one breaking down again, or some real,
not imaginary, traffic jams in the future.

4/2014 454/20144/2014

Publisher
VWT Polska Michał Kruszewski
Przy Lasku 8 lok. 52, 01-424 Warszawa
Number NIP 5272137158
Number REGON 142455963

Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl

WWW
www.qualemagazine.com
www.quale.pl

Facebook
http://www.facebook.com/qualemagazine

Advertisement
info@quale.pl

Cooperation
If you are interested in cooperating with us,
please send us a message:
info@quale.pl

Magazine

All trade marks published are property of the
proper companies.

Copyright:
All papers published are part of the copyright
of the respective author or enterprise. It is
prohibited to rerelease, copy or modify the
contents of this paper without their written
agreement.

The following graphics have been used:

Cover

http://pixabay.com/pl/aplikacja-telefon-
kom%C3%B3rkowy-iphone-141046/

Content:
http://pixabay.com/pl/brzegowe-morze-morze-
ba%C5%82tyckie-339251/
http://pixabay.com/pl/fraktal-spirala-gwiazda-
%C5%9Bwiat%C5%82o-105892/
http://pixabay.com/pl/cz%C5%82owiek-
biznesmen%C3%B3w-kobieta-162951/

MAGAZINE

