
1

Software-QS-Tag 2015

Q
ua

le
 1

/2
01

5

User Story Effectiveness:
How to Boost Your

Development Quality
Dominik Maximini

Vision Planning
Chapter 1 - Objectives

Tom Gilb

Testwarez 2015

2 1/2015

Content

Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl

Cooperation:
Tomasz Olszewski
tomasz.olszewski@quale.pl
Zuzanna Gościcka-Miotk
Zuzanna.goscicka-miotk@quale.pl

Website:
www.qualemagazine.com (ENG)
www.quale.pl (PL)

Facebook:
http://www.facebook.com/qualemagazine

5. User Story Effectiveness: How to Boost Your Development Quality
Dominik Maximini

15. Vision Engineering. Chapter 1 - Objectives
Tom Gilb

28. Agile and Scrum Methodologies from a Testing/QA Perspective
Marina Gil-Santamaria

SOFTWARE ENGINEERING imbus TestBench is the working environment for test teams of all sizes, and
provides everything that is required of a modern support tool:

Test planning, test design, test automation, test execution and reporting.

TestBench can be integrated seamlessly into your existing tool chain. Its key
benefits include intuitive operation, high-performance test functions and a
practical model for rights and roles, besides which it also supports structured
testing according to the ISTQB® standard.

TestBench provides complete control and transparency in the content, status,
progress and results of your software tests – at all times and across all
development locations and all releases/versions of your software.

20 years of test management experience are reflected in every aspect of the
TestBench.

 Provides fundamental support for all tasks in software testing
 Fully integratable in your test system landscape
 Rapid deployment thanks to various test description methods
 Especially efficient for test design and test specification
 Convenient for test planning and control
 Flexibility in automated test execution
 Extremely good value for money using the renting model

TestBench allows you to concentrate on what is truly important for your company:

 Ensuring that your products and IT systems are of the highest quality through optimum test control
throughout their entire life cycle.

 Reducing development costs through efficient working processes and rapid flow of information between
teams.

 Shortening your product’s time-to-market by eliminating unnecessary bug fixing cycles.

imbus AG, Kleinseebacher Str. 9, 91096 Moehrendorf, Germany
Phone +49 9131 7518-0, testbench@imbus.de, www.imbus.de

 > learn more...

 TestBench – The smart solution for all test tasks

31/20151/2015

imbus TestBench is the working environment for test teams of all sizes, and
provides everything that is required of a modern support tool:

Test planning, test design, test automation, test execution and reporting.

TestBench can be integrated seamlessly into your existing tool chain. Its key
benefits include intuitive operation, high-performance test functions and a
practical model for rights and roles, besides which it also supports structured
testing according to the ISTQB® standard.

TestBench provides complete control and transparency in the content, status,
progress and results of your software tests – at all times and across all
development locations and all releases/versions of your software.

20 years of test management experience are reflected in every aspect of the
TestBench.

 Provides fundamental support for all tasks in software testing
 Fully integratable in your test system landscape
 Rapid deployment thanks to various test description methods
 Especially efficient for test design and test specification
 Convenient for test planning and control
 Flexibility in automated test execution
 Extremely good value for money using the renting model

TestBench allows you to concentrate on what is truly important for your company:

 Ensuring that your products and IT systems are of the highest quality through optimum test control
throughout their entire life cycle.

 Reducing development costs through efficient working processes and rapid flow of information between
teams.

 Shortening your product’s time-to-market by eliminating unnecessary bug fixing cycles.

imbus AG, Kleinseebacher Str. 9, 91096 Moehrendorf, Germany
Phone +49 9131 7518-0, testbench@imbus.de, www.imbus.de

 > learn more...

 TestBench – The smart solution for all test tasks

4 1/2015

The IT industry is developing rapidly – and so is the software testing sector.
What should one brace oneself for in the years ahead? imbus has asked the futurologist
and science writer Dr. Bernd Flessner to cast light on the future of software testing.

The trend study “The Future of Testing” is the result.

Dr. Bernd Flessner invites the readers to take a look into the future. On circa 40 pages,
scenarios for the time periods “from 2020”, “from 2035” and “from 2050” describe possible
developments of the testing sector – each examing both a positive and a negative
viewpoint. The study features forecasts on much-discussed technological developments,
including industry 4.0, Outernet and smart home.
It explains, how they could directly affect the testing
sector – and it derives, what this means for the software tester
profession.
“The Future of Testing” features besides the scenarios also
the results of an exclusive Delphi survey.
Each five well-known international experts of the IT and the
testing industry were asked to assess the effects of specific
trends on the software testing industry in the near future.
Dr. Bernd Flessner draws in “The Future of Testing” on the
theses from his keynote “Wir Prothesengötter” at the Software-QS-Tag 2013 and the
panel discussion at the Software-QS-Tag 2014.

The study was published in English and German. Both versions can be downloaded in
PDF format free of cost at www.imbus.de/en/downloads.
Reader feedback on the scenarios illustrated in the study is always welcome – please
send it to presse@imbus.de. imbus will gladly forward the feedback to the author and
thus establish the contact.

imbus AG, Kleinseebacher Str. 9, 91096 Moehrendorf, Germany
Phone +49 9131 7518-0, presse@imbus.de, www.imbus.de

 > free PDF...

How will „The Future of Testing“ look like?
imbus presents trend study by Dr. Bernd Flessner

51/20151/2015

SOFTWARE ENGINEERING

Dominik Maximini

User Story Effectiveness:
How to Boost Your

Development Quality

Origins and Concept

User Stories are part of eXtreme Program-
ming and advocated by Agilists like Ron
Jeffries and Mike Cohn [1]. The original
idea was that of the “Three Cs”: Card, Con-
versation and Confirmation[2]; meaning a
physical ticket of a certain maximum size
(the card) should represent the require-
ment, the clarification should happen by
means of dialogue (conversation) rather

than written thought exchange, and there
should be clear and verifiable acceptance
criteria (the confirmation), so success can
be evaluated. The question what to put
on the card was answered in numerous
ways. My personal favorite is that offered
by Connextra [3]: As a <role> I want
<desire>, so that <value>. Tradition-
ally, acceptance criteria go to the back of
the card.

This concept is only very rarely put to good
use. Far more often, misconceptions are
introduced.

Eight Common Misconceptions

If you get things wrong, you will fail in one
way or another. This is normal and not
necessarily bad, if you have time and re-
sources to learn from failure. Sometimes
you do not have the time to learn, so it
might be helpful to consider some pitfalls
beforehand. Here are eight misconcep-
tions you should avoid in order to increase
quality (see: frame on the next page).

The concept of User Stories might
seem simple, but it definitely is
not. To use them in a professio-

nal manner and improve the quality
of your requirements and ultimately
your product, one has to do a lot of
work. This article explains what and
how this can be done. However, be
aware that there are many different
opinions on User Stories out there.
Depending on whom you ask, even
the core elements of a User Story
might vary.

6 1/2015

USER STORY EFFECTIVENESS: HOW TO BOOST YOUR DEVELOPMENT QUALITY
EIGHT MISCONCEPTIONS

Misconception 1: You must use User Stories if you do Scrum!

Actually, you don’t. Scrum is a lightweight framework that tells you to define “Product
Backlog Items” [4]. User Stories are one way to do it, but certainly not the only way.
There are other ways of capturing requirements/desires that might better suit your con-
text. If you use a tool without careful consideration and reason, you might be on the verge
of hammering a screw into the wall – with a wrench. A painful and potentially expensive
experience.

Misconception 2: Numerous pages of specification for each User Story are re-
quired.

Some organizations use their traditional requirements specification process and put the
headline “User Stories” on top. While you might actually need comprehensive require-
ments in rare scenarios, User Stories are intended to replace documentation with con-
versation. If your requirement fills more than one page, you most likely won’t be able to
finish it in one short iteration and thereby compromising your Agility.

Misconception 3: You don’t need to specify the <role> part. Just put “User” or
“Product Owner” in.

Losing the first part of the syntax means that you no longer think of who the value is for.
This might indicate you don’t really know your stakeholders. Even if you only have a single
customer and a single product, there are most certainly several roles involved. People in
those roles might want to pursue different goals. It’s good to know for whom you do what,
otherwise 70-year-old aunt Harriet might end up with a command-line interface 25-year
old admin Joe requested.

Example of this misconception: “As User, I want a new login dialogue, so that I can access
my profile within 10 seconds.”

Misconception 4: It is enough to state the <desire>. If we do that right, we don’t
need the <value> part.

So value is not important? Usually, misconceptions 2 and 4 play together: organizations
don’t specify what they need, they specify what to do. Of course, when you specify what
to do, the monkeys doing it don’t need to know why they are doing it. If you truly want
to be Agile, this approach doesn’t work as the expectation is that your team thinks for
itself and provides better solutions than you could deliver alone. Your team needs to know
the value required, otherwise they cannot focus their thinking and might build what you
asked for, even though something else would be more cost-efficient or filling the actual
need better.

Example of this misconception: “As Aunt Harriet, I want a new login dialogue.”

71/20151/2015

SOFTWARE ENGINEERING
EIGHT MISCONCEPTIONS

Misconception 5: No quantification of what value is needed.

Since we are talking about value already: If you don’t quantify your value, you will never
know if you achieved it. Instead, you will have many lengthy discussions with your stake-
holders.

Example of this misconception: “As Aunt Harriet, I want a new login dialogue, so that I
can access my profile faster.”

Misconception 6: Acceptance criteria are not Agile. We don’t need them.

Usually, every User Story has some acceptance criteria. They represent what was already
discussed and decided. They should also describe the expectations in the form of tests
the person in the role has on how the product should behave when developed. If you do
not capture what was discussed, mistakes happen and unnecessary discussion time is
increased. This stays true, no matter if some self-appointed Agilist tells you to “stop ex-
panding the documentation” since documentation wasn’t agile in his opinion.

Agile primarily tells you to do what makes sense. So capture the information you need.

Misconception 7: No measurement of results. While features are tested, value is
not.

Most teams are not able to tell their stakeholders how much value they created in the last
Sprint/release/decade. They can only tell how many features they delivered. This also
means that the team does not know when to stop working on a certain goal. As soon as
you have quantified your goals, you must start measuring your progress towards them.
This step alone should multiply your transparency, focus, and productivity.

Misconception 8: Planning ahead is waste. We can create User Stories on the
spot. No prior work is needed on them.

As Eisenhower said: “[…] Plans are useless, but planning is indispensable!”

If you do not exercise your brain in time, you won’t notice when you start missing your
target. You need to have at least a rough and quantified idea of what you want to achieve
within a release and a much clearer idea for your next Sprint, otherwise you are at risk
much like a driver speeding through the fog at 220 km/h. Agile does not mean that you
stop planning. It means you plan just enough to be prepared for what you are trying to
achieve.

8 1/2015

USER STORY EFFECTIVENESS: HOW TO BOOST YOUR DEVELOPMENT QUALITY

These – and other misconceptions – lead
to low quality and waste in many forms.
The most common ones are unnecessary
discussion, developing the wrong features
in the product and rework after product
delivery. It is up to you to minimize these
issues.

glasses, being computer-illiterate and pri-
marily being used to ordering via cata-
logue forms. Having captured this data,
you can label it with a name and picture,
sometimes with a role description. In our
case, this could be “Aunt Harriet”. From
this point on, whenever you mention Aunt
Harriet, everybody involved will know that
this group of customers needs slightly big-
ger fonts, clear forms on a single page and
no information messages whatsoever pop-
ping up on the screen. Don’t you dare to
force this group to remember their pass-
words!

In addition, it makes sense to capture the
goals of every persona, that is, stake-
holder group. While these do not have to
be noted down on the same flipchart, you
need to be aware of each one’s goal condi-
tions.

How to fill the <value> part

Now that you know what your stakeholders
want, you can quantify it, top-down. Start
with the project’s goals, continue with re-
lease and iteration goals - all quantified.
Those goals should result from the care-
ful consideration of different strategies to
achieve the respective higher goals. So
project, release, and iteration goals are
streamline with higher business goals, and
with each other. This means Sprint goal Z
represents a strategy to achieve Release
Goal R1 and you only have decided to go
for Sprint goal Z, because strategies X and
Y seemed less efficient. Only then start
thinking about your User Stories, and only
then create them. This approach sounds
easy, but if you aren’t used to it, you are
up for a tough time. Here are some exam-
ples of relatively good value statements in
User Stories:

How User Stories are supposed to
work

The purpose of User Stories is to reduce
documentation time, allow flexibility in
the solution and to avoid misunderstand-
ings resulting from indirect communica-
tion. They are not meant to be a full re-
quirements specification document, as it
is used today in most traditional projects.
However, you can only be successful with
User Stories if you focus on value – and
quantify it. Since value is always depen-
dent on the recipient, this is the place to
start.

How to fill the <role> part

You probably have dozens of stakeholders,
and you have to know them all. In most
cases, those who pursue the same goals
can be grouped. Others are not inter-
ested in the requirements as such or can
be queued for the time being due to oth-
er reasons. This leaves you with a list of
stakeholders and stakeholder groups you
must take care of. One very efficient way
to find out and capture what those groups
expect is to create “personas”. This means
that you create a flipchart and note down
all aspects that characterize this particu-
lar group and are relevant to the proj-
ect. For example, you might find yourself
with a group of end-customers, averaging
60 years of age, female, wearing strong

91/20151/2015

SOFTWARE ENGINEERING
USER STORY

10 1/2015

Of course, there is still a fair amount of un-
certainty in these statements. We do not
know from what point Aunt Harriet wants
to complete her order or what “complete”
exactly means for her. We also do not spe-
cifically know how bad her eyes are and
what type of computer, screen and set-
tings she uses. As for Chris, we need to
know what type of smartphone he uses and
what “navigation” means for him, as well
as which type of payment process is use-
ful for him. There is probably much more
vagueness in the statements above, but
the goal is clear enough to discuss it in a
focused way while measuring the outcome.
All relevant uncertainties either need to be
specified as “acceptance criteria” upfront,
or must be discussed and clarified during
development. If you have to invest a lot of
time in the specification process, you are
probably better off discussing the details
during development. Usually, a multidirec-
tional conversation produces mutual un-

derstanding far quicker than unidirectional
documents ever could.

How to fill the <desire> part

Knowing the value you are striving to
achieve, you now can choose the best
strategy to get there. This implies that you
strictly separate “goals” from “means”. The
goal is specified in the value part of your
User Story, the means is what many peo-
ple describe as “feature” or “function”. Un-
fortunately, most organizations start with
formulating a bunch of features instead of
specifying the value they are striving for
and evaluating different strategies to get
there. This leads to inferior efficiency and
production of waste. What should be done
instead is a thorough comparison of strat-
egies with respect to their ability to reach
the aspired values, under consideration
of their respective costs. Only when this
has been done, should the User Stories be
written.

Let’s consider our example: We want to
improve our sales volume and figured out
that one reason for lower sales is that our
target customer group represented by
Aunt Harriet is dropping out of the order
completion process after 10 seconds in
80% of all cases. This results in lost po-
tential sales, so we want to allow Aunt
Harriet to be able to complete her order
within 10 seconds and presume we could
get the drop-out number down to 40% by
achieving this goal. We are now consider-
ing different strategies:

1. We could offer call center support to
complete the order process for Aunt
Harriet. This would be costly, but would
reduce Aunt Harriet’s time in the order
completion process to zero.

USER STORY EFFECTIVENESS: HOW TO BOOST YOUR DEVELOPMENT QUALITY

As Aunt Harriet, I want a new check-
out dialogue, so that I can complete
my order within 10 seconds.

As Aunt Harriet, I want bigger fonts,
so that I can read the product infor-
mation from a distance of 80 cm.

As Teenager Chris, I want a clear site
structure, so that I can find all navi-
gation options with my smartphone
within 5 seconds.

As Teenager Chris, I want to be able
to pay for my purchase via smart-
phone, so that I do not have to re-
member any payment information on
checkout.

111/20151/2015

2. We could change the whole sales plat-
form in a way that when somebody
leaves the page, a dialogue comes up,
asking if the order should be complet-
ed now. Unfortunately, Aunt Harriet
doesn’t like any pop-ups.

3. We could simplify the checkout process
with a one-page dialogue that looks fa-
miliar to Aunt Harriet.

Out of these three strategies, only option
one and three are valid since Aunt Har-
riet could not cope with a pop-up dialogue.
Both strategies could solve the issue and
reach the goal, but the costs are signifi-
cantly lower for option three. So we would
opt for this one and formulate a User Sto-
ry:

SOFTWARE ENGINEERING

is the User Story card (or its equivalent in
digital tool). This part is often called the
“Acceptance Criteria Section”. Don’t try to
capture every little tidbit of information,
stick to the really important ones. Let’s
take a look at our example again:

As Aunt Harriet, I want a new check-
out dialogue, so that I can complete
my order within 10 seconds.

If you want to learn more about defining
value, separating goals from means, and
reducing uncertainty, I recommend you
read Tom Gilb’s excellent book “Competi-
tive Engineering”.

Acceptance Criteria

As Aunt Harriet, I want a new check-
out dialogue, so that I can complete
my order within 10 seconds.

Acceptance criteria:

• The dialogue must fit on one screen
page without scrolling

• It must roughly resemble a catalog
form

• We only capture essential information

In many cases (including this example),
acceptance criteria are too vague to be of
great help. We know the intentions, but
we aren’t sure what exactly is meant. This
is where direct communication comes into
play: A team confronted with this type of
acceptance criteria will immediately ask
questions like:

• “What exactly does ‘one screen page’
mean?”

• “What is a catalog form in this context?”
• “What information is essential for us?”

Whatever the outcome of this discussion
is can be used to clarify the requirement.
The answers are usually stored in the ac-
ceptance criteria:

• The dialogue must fit on one 1024x768
pixels screen page without scrolling

• It must roughly resemble a catalog
form, see mail-order catalog of “Quelle
Inc.” from 2010 for details

No Agile method tells you to stop thinking.
In fact, the primary Agile tool is common
sense – at least in my opinion. So when-
ever you feel the need to document some-
thing, note it down. Whenever you notice
that your documentation doesn’t benefit
your project, stop writing. It’s really that
simple and means that your level of docu-
mentation can change with rising or de-
clining needs throughout a project. The
right place to capture decisions and infor-
mation directly related to the User Story

12 1/2015

USER STORY EFFECTIVENESS: HOW TO BOOST YOUR DEVELOPMENT QUALITY

• We only capture essential information,
which is: Name, postal address, and
billing information, while “pay via bank
transfer after goods received” is the
standard option

As soon as a good-enough level of clarity
is achieved, the Development Team can
start to develop the <desire> and achieve
the <value>. Small uncertainties are not
an issue since the concept of User Story
is based on close collaboration between
Development Team and customer (e.g.
Product Owner, Stakeholder, etc.). Better
options and wrong turns are spotted early,
discussed, and remedied.

Verification

If you invest time, money and sweat into
anything, you should verify if it was worth
the effort. To do this, you must do two
things in the context of a User Story: First,
verify if the desire is fulfilled and your
product actually does what it was intend-
ed to do. Second, verify to what degree
the aspired value was achieved. First veri-
fication can be done through acceptance
tests, ideally in an automated way. If you
were really advanced you would even im-
plement the automated tests before you
would have developed the actual product
(ATDD) – this way you optimize your ef-
fort and know immediately when you are
done. The value verification is usually a bit
more complicated, because it can not nec-

131/20151/2015

SOFTWARE ENGINEERING

REFERENCES

1. E.g. Mike Cohn (2004), „User Stories Applied: For Agile Software Development“, Ad-
dison Wesley

2. Ron Jeffries (2001), “Essential XP: Card, Conversation, Confirmation”, http://ronjef-
fries.com/xprog/articles/expcardconversationconfirmation/

3. http://agilecoach.typepad.com/photos/connextra_user_story_2001/connextrastory-
card.html

4. Cf. The Scrumguide. http://scrumguides.org/

AUTHOR

Dominik Maximini

Dominik Maximini is an Agile Coach and Professional Scrum
Trainer, working for NovaTec Consulting GmbH in Germany. He
has written several books and articles and is a frequent speak-
er on national and international conferences. His Blog can be
found at http://scrumorakel.de/blog/. He is looking forward to
your feedback.

essarily be done in the product itself. In
our example, we have to verify two val-
ues: Completing the order within 10 sec-
onds and reducing the drop-out number
to 40%. While the order completion time
can be measured from within the applica-
tion or even the feature, it is more diffi-
cult with the drop-out number. Here we
need to survey real customers purchasing
real products. However, it must be done
– otherwise we have no clue whether we
achieved our goals and how we should
adapt our strategy in the future.

Conclusion

The User Story concept is simple, but re-
quires a lot of thought to be put into it

in order for it to work well. The aim is to
achieve good-enough quality in your re-
quirements to enable you to build a great
product. You have to know your stake-
holders and their goals before you start
writing anything down. Then you need to
specify and quantify the added value you
are striving for. Only when you know this
value, can you weigh different strategies
against each other, choose the best one,
and implement it via a User Story. Addi-
tional information and decisions can be
captured in the form of acceptance crite-
ria. The whole concept has a natural ten-
dency to vagueness, which is intended to
stimulate constant direct communication.
When using User Stories, save yourself
time and money by doing it right!

14 1/2015

October 7-9 2015

Windsor Palace Hotel & Conference Center, Jachranka, Poland

Join the biggest Polish conference for software testers.

This year we celebrate our 10th anniversary edition!

Sign up today!

en.testwarez.pl

151/20151/2015

SOFTWARE ENGINEERING

Tom Gilb

Vision Engineering

Clarifying Core Ideology

We can begin with the core ideology state-
ments themselves. It might be healthy
to increase the clarity and intelligibility of
the core value statements, and the core
purpose statements, themselves. This can
either be done as a clarification, without
changing the original statements them-
selves – they may be somewhat ‘holy’ and
traditional – or you might find it advanta-
geous to directly modify them for clarity.

Clarifying a Core Value State-
ment

Take for example a core value statement:

3M [1, p.68, p.152-3] “Tolerance for
Honest Mistakes”

Anyone could reasonably ask:
• How much ‘tolerance’?
• What does ‘honest’ mean?
• What is a ‘mistake’?

Chapter 1 - Objectives

 How to support your core business vision by detailed
practical plans and actions

16 1/2015

COMPETITIVE PLANNING - OBJECTIVES

Figure 1. Some attributes of a Core Ideology

No doubt, the corporate practice itself, and
senior employees, can answer these ques-
tions in practice. But let us say that we
wanted to clarify even better, because of
rapid growth in distant cultures – so peo-
ple got it better, faster?

We might also want to clarify as a better
basis for deriving more-detailed plans and
practices. We can rewrite the statement,
or provide helpful interpretation commen-
tary.

Why?

A useful approach to clarification is to ask
‘why?’. In this case the reasons (for ‘tol-
erate honest mistakes’) seem to be to
encourage experimentation, so that im-
proved ideas are more likely to emerge,
than if people were afraid of being criti-
cized for failed experiments.

So we could rewrite the core value, in or-
der to get nearer the real intent:

“Judge efforts on their useful out-
come, not on necessary experiments to
get there.”

“Judge results, not process”.

There are a large number of other pos-
sible methods for clarification of core val-
ues, and indeed any planning statement,
at any level. More follows in the rest of this
chapter, and other chapters in the book,
and its references.

The main point is that no matter how ‘hal-
lowed’ the statement is (“All men are cre-
ated equal.”) you should consider as your
first step, some clarification of the core
statement itself, maybe a real ‘elevation’:
it is ‘core’, right?.

CORE IDEOLOGY

171/20151/2015

SOFTWARE ENGINEERING

The penalty, if you fail to clarify, might be
that all other critical planning will be based
on misinterpretations of the core! The cost
to get it right is small; like an hour to a
day of effort.

Clarifying a Core Purpose

It is arguably even more critical to have
a rock solid, crystal clear Core Purpose
Statement as the basis for further plan-
ning.

‚WHY’ TECHNIQUE

Figure 1. Asking ’Why?’, multiple times, is not only a practical way to ‘clarify’ a core value. It might easily
lead to your own recognition that you need to reformulate your core values at a higher level. What you had
originally, might have been but one means (tolerate mistakes) to the real ends (create value).

Take for example: Merck [1930s, 1, p.236]
“To preserve and improve human life”

This is intended as the fundamental per-
formance measure of all corporate activ-
ity for a pharmaceuticals company. It is
of course constrained – and thus partly
defined - by their core values (keywords:
responsibility, excellence, science, honest,
profit).

If someone found that their pharmaceuti-
cal technology could be used for animals

18 1/2015

COMPETITIVE PLANNING - OBJECTIVES

or plants – does the ‘human life’ idea ap-
ply, or disqualify the product area?

If they could extend human life for people
living in a coma, does that count, as within
their core purpose?

If they found psychological, mechanical,
electronic or religious means, or other
‘services’, for improving the human life;
are they valid, or is there some constraint
about sticking to the drug business, even
if other available means are more cost-
effective?

I can’t see where it says, strategy con-
straint ‘drugs only’.

Let us look at some possible Merck ‘clari-
fications’ for “To preserve and improve
human life”:

‘To improve life quality by any means.’

‘To provide products to improve life
quality.’

‘To develop knowledge, and apply it, to
get improved human mental and physi-
cal life quality.’

Each one of these is significantly different
from the other. So consider a rethink of
the articulation of your most fundamental
purpose, before making it the touchstone
of all other planning work.

Defining a Scale of measure

One ‘device’ we will need, sooner or later,
to really clarify performance objectives, is
to define them, so that we can quantify
them in practice.

EXAMPLE

Figure 3. Any performance measure, for an organization, can be thought of as an arrow, with the perfor-
mance itself varying from very bad (left hand side ‘-‘) to very good (right hand side ‘+’). The arrow itself is
defined as a useful performance variable, such as “average time needed to make a sale”. Along this defined
Scale of measure, we can then describe useful degrees of performance data. Past performance, and future
plans.

191/20151/2015

SOFTWARE ENGINEERING

The fact that we can then set numeric tar-
gets, and numeric constraints, and track
them, is powerful; but in fact is not the
main point.

The main purpose of ‘quantification of
performance objectives’, is to force us to
think deeply, and debate exactly, what we
mean; so that others, later, cannot fail to
understand us.

Performance objectives, ranging from core
objectives to ‘any’ detailed performance
objective – where ‘getting better-and-bet-
ter in time’ is implied – can always be de-
fined using ‘scales of measure’.

And once we have agreed ‘scales of mea-
sure’, we can apply a large useful set of
devices, to utilize the fact that we have
entered ‘numeric territory’.

Less poetry, more logic [nothing wrong
with poetry and the arts, in their place].

Let me introduce a ‘planning language’
method (‘Planguage’, I call it, rhymes with
‘language’).

• We write “Scale:… “ in front of our
defined scale of measure.

• Note that we are NOT defining a test-
ing, tracking or measuring process (lat-
er called ‘Meter: ---“) yet. Volts, not
voltmeter.

• We are just enabling ourselves to think
about our most cherished core purpose
numerically.

• Let us try with the example: ”To pro-
vide products to improve life qual-
ity”.

• What is the ‘scale’ to quantify this, and
to define what we mean numerically?

S1: Scale: New Products Released Annu-
ally.

You can see the weakness with this draft,
S1?

S2: Scale: Annual Sales for all products
that improve life quality.

And the weakness with this, S2? For ex-
ample, Merck is famous for giving away
some drugs!

I would prefer this draft:

S1,S2 and S3 are arbitrary reference tags
to the statements. Capitalized terms (‘Bet-
ter Days’) are formally defined terms.

I would argue that ‘S3’ is a pretty good
draft effort, as a powerful definition of our
Core Purpose. The core purpose has not
changed. But our ability to articulate it,
and to discuss any related plans, is argu-
ably improved.

I would argue that it can help us, in de-
riving relevant aligned plans, and help us

S3: Scale: Estimated Better Days for
defined [Life Form] as a direct result
of defined [Products].

Better Days: days where the entity
themselves, or another better judge,
would judge their life to be better
than without Our Product.

Life Form: {Human, Animal, Plant}

Products: {Patents, Drugs, Ma-
chines, Licenses, Services, Distribu-
tion, Education, Motivation, Others}.

20 1/2015

COMPETITIVE PLANNING - OBJECTIVES

to judge their effectiveness, for promoting
our core purpose.

I would argue that ‘S3’ is a better top
management tool than the ‘poetic’ phrases
(S1, S2) that preceded it, even though po-
etry might still be useful for simple emo-
tive presentation, in some circumstances.

Management can usefully distinguish be-
tween ‘presentation formats’ (like:

Ambition Level: To provide products
to improve life quality.

and ‘planning formats’ (like S3).

You probably need both formats, for dif-
ferent audiences and purposes.

Deriving Objectives from the
Core Purpose and Core Values

A defined ‘Scale’ gives us a ‘numeric-scale
definition’ of core value and core purposes.

This enables us to move our planning from

a ‘poetic’ to a ‘numeric’ basis.

We can now plan, by determining a useful
set-of-points on that scale of measure.

There are three major planning catego-
ries:

• Benchmarks: points for comparison
with plans.

• Constraints: borders, worst accept-
able levels.

• Targets: levels of performance we are
aiming for.

I have defined a number of these concepts
in Planguage. Here is a useful set.

Benchmarks: levels of performance
worth knowing about, in comparison with
future planned levels. For us, for competi-
tors, for the past and possible future.

Past: any estimated, or measured, lev-
el for us, or others, that is interesting to
compare future plans to.

Trend: an estimation of the levels, good

EXAMPLE

Figure 4. My suggested, draft, ‘scale of measure’, for my ‘improved’ variant of Merck’s original core purpose
(‘To preserve and improve human life’) “To provide products to improve life quality”.

211/20151/2015

SOFTWARE ENGINEERING
PERFORMANCE

Figure 5. Three major categories of ‘levels’ of performance.

or bad, that will probably be reached by
us, or others, at defined times, and un-
der defined circumstances.

Record: a state-of-the-art extreme, at-
tained under defined conditions.

Constraints: less-than-successful area
we are trying to avoid.

Catastrophe: the edges of a numeric
range of performance results that are
disastrous in consequence, and possibly
not recoverable.

Tolerable: the edges of a numeric
range that is tolerable, just above Ca-
tastrophe, but still failing to some de-
gree to satisfy, even at the OK level.

OK: a range just above the tolerable
range.

• Not intolerable.
• Not failing.
• Pretty ‘good’,
• but not yet at an ambitious and com-

petitive ‘success’ level, the Goal.

CONSTRAINTS

Figure 6. Points and ranges on a scale of performance

22 1/2015

COMPETITIVE PLANNING - OBJECTIVES

Targets: levels we are aiming to reach.

Goal: a level which is both satisfactory,
and considered feasible; you can prom-
ise it.

• ‘Better than the Goal level’ is a range,
we can call the success range.

• But, there might not be any defined
or planned value for getting better, in
that range.

Stretch: a level that has stakeholder
value, and which you will attempt to
move towards, if resources remain, af-
ter all other critical objectives’ Goal lev-
els are reached. This means we are not
fully committed to achieve this level: it
depends.

Ideal: (rarely used except to distinguish
it from more practical targets) a level of
perfection unlikely to be achievable in
practice, and not necessary (since com-
petitors cannot get to it either). But we
can aim to ‘tend towards’ it. From an-
other point of view, it is also a ‘bench-
mark’.

• Examples 100% availability, zero
time to learn to do a non-trivial task.

Determining the numbers

The next step is to determine some ‘plan-
ning values’ (some numbers on the scale
that are valuable for our planning purpos-
es), using any useful means to determine
the numbers.

For example:

This makes the point that we plan to get
‘ten times better’. But it would be more
intelligible, if we added some ‘implied but
not stated here yet’ defined conditions, in
a ‘qualifier’ statement, in [square brack-
ets], like this:

Merck Core Purpose:
S3: Scale: Estimated Better Days
for defined [Life Form, default: Hu-
mans] as a direct result of defined
[Product, Default: All].
Past: 100.
Goal: 1,000.

Merck Core Purpose:
S3: Scale: Estimated Better Days for
defined [Life Form, default: Humans]
as a direct result of defined [Prod-
ucts, Default: Pharmaceuticals].
Past [2014, Europe, Products = Tran-
quilizers, Life Form = {Humans, Ani-
mals}] 100.
Goal [2024, USA, Products = All Mer-
ck Products and Services] 1,000.

The [qualifier] statement enables us to
be more specific. And since we can have
many such statements (many Goals, Many
Pasts) about different interesting levels of
performance, we can plan for a both com-
plex enterprise (many connected parts),
and complicated enterprise (difficult to
predict, estimate and understand, espe-
cially with respect to its environment).

This avoids vagueness, over-simplifica-
tion, misunderstandings, and over-gener-
alization. We can be as clear, exact, and
specific as is useful, at a given stage of
planning.

For example:

231/20151/2015

SOFTWARE ENGINEERING
EXAMPLE

Any useful number of points on the busi-
ness performance scale (in this case a
‘Scale’ for the ‘top level performance’ core

purpose) can be defined, using any in-
teresting set of the types of points (Past,
Goal, Tolerable, etc.). And any set, or com-
bination of, [qualifier conditions], a sort of
‘adjectives’, can be planned, in addition to
any one of these scale points.

It is obvious that the qualifier conditions
permit ‘drilling down’ into detail of plans
laid, later, and at sub-levels (for example
year by year, and country by country).

Notice that the Scale definition is being
‘reused’ (write once, use many times), by
all these scale points.

It therefore becomes more obvious, why
we take pains to be precise in defining a
Scale (using 10 words, rather than one),
and why we parameterize it (‘defined [Life
Form]’).

Figure 7. Specific instances of each type of planning point on a scale.

Merck Core Purpose:
S3: Scale: Estimated Better
Days for defined [Life Form, default:
Humans] as a direct result of defined
[Product, Default: All].
Past [2014, Europe, Products = Tran-
quilizers] 100.
Goal [2024, USA, Products = All Mer-
ck Products and Services] 1,000.
Goal [2020, Worldwide, Products =
All Merck Products and Services, If
Merge Approved] 500.
Tolerable [2020, Europe, Products =
Pharmaceuticals] 200±100? <- CEO
Vision Statement.

24 1/2015

COMPETITIVE PLANNING - OBJECTIVES

Clarifying Objectives

It is central that objectives are perfectly
understood, by all intended readers. All
employees, investors, media etc.

Perfect practical clarity is a nearly attain-
able objective, using fairly simple means.

It is unacceptable, (a bad practice we
have measured worldwide) for objectives
to be so badly written, that employees and
managers judge 30% to 70% of all speci-
fication words they read, to be either am-
biguous or unclear (to at least some of the
potential readership).

The astute reader will already have noticed
some of the devices we use to reduce am-
biguity (Scale + Goal for example, beats
‘exceedingly’). Many other devices in the
Planning Language are not yet explained
or mentioned. But they are available when
you are ready.

Here are some clarification practices that
have already appeared in the examples
above:

1. Consistent official definition of key
planning parameters (like Past, Goal,
Scale). A formal Glossary exists [Plan-
guage]

2. Our drive to become numeric (beats
nice words like ‘substantially improved’)

3. The use of qualifiers to define ‘when’,
‘where’ and other conditions. “[2020,
UK, If Finance Approved]”

4. The consistent formal use of terms
written with Capital Letters, indicating
that the term is formally defined. Like:
Life Form: {Human, Animal, Plant} in
the initial S3 example above. And like
”Past, Scale, and Merck Core Pur-
pose:”.

5. There are dozens more devices, you can
choose to improve clarity, too many to
enumerate here.

Your practical ‘organizational planning-
improvement campaign’, we have found,
should be ‘to reduce ‘major defects’ (avoid
planning specification terms that might
possibly cause misinterpretation, of seri-
ous consequence, by some reader) in plan-
ning. The degree of improvement should
be from a ‘normal’, but unacceptable, level
of 30% or more, to a level of less than 1
per 300 words. A tough but do-able objec-
tive.

Extending Understanding of the
Objectives – Background

In addition to the specification devices
mentioned above (“Clarifying Objectives”),
we have developed a large set of simple
devices for adding background informa-
tion to a fundamental objective.

It consists of a predefined set of ‘param-
eters’ (Scale and Past are ‘parameters’
too), and other Planguage [2] devices; as
well as the ability to define any new addi-
tional parameters you find useful.

We already inserted some background in-
formation in the example:
±200 means the tolerable range is 200
days (500 to 900 days)

Tolerable [2020, Europe, Products =
Pharmas] 700 ±200 ? <- CEO Vision
Statement.

251/20151/2015

SOFTWARE ENGINEERING

? means even this is a questionable num-
ber or interpretation. Don’t take it too se-
riously. Uncertainty.

<- is a ‘Source’ arrow, used to specify
our source of the specification. In this case
the ‘CEO Vision Statement’.

We could have also written:
Here is a small sample of some of the oth-
er available background statements (with
illustrative text after the parameter):

EXAMPLE

With all the statements you might want to
use, you can easily fill a page, or a slide,
with 20 to 60 statements for a single de-

Tolerable [2020, Europe, Products =
Pharmas] 700.
Range: ±200 days
Risk: incorrect interpretation of
actual CEO slide 25.
Source: CEO Vision Statement, Jan 1
20xx Brussels.

Figure 8. Simple examples of defining interesting planning points along a Scale.

Supports: Core Purpose
Supported By: Top Long-Range Ob-
jectives
Constrained By: Core Values
Implementation Responsibility:
CEO
Plan Owner: Strategic Planning of-
fice

fined objective. It is up to you, to use or
create, what you find valuable to add, as
background to the core specification. The
full specification, for a single objective,
forms a small collection (‘database’) of
‘everything’ we need to know, in relation
to that objective. Of course, subsets, right
down to one-liners, can be extracted for

26 1/2015

COMPETITIVE PLANNING - OBJECTIVES

specific presentation purposes, while oth-
er statements can be drilled-down to, on
demand.

Once when we were having a top manage-
ment fight in London, about using this for-
mat (the Marketing Guys wanted to keep
it simple and unintelligible) a seasoned di-
rector stopped the show by saying:

I have estimated that we spend on av-
erage £200,000 for each one of these
objectives, and too frequently screw
things up. If defining an objective in
40 lines instead of one line solves that
problem, then that is a small price to
pay, and a necessary investment in get-
ting our business right” (Thanks BW).

If you use the simple principle of invest-
ing more effort, in management planning
quality, only if it pays off, you should not
end up with unnecessary bureaucracy.

I know we have too much meaningless
low-quality verbiage in planning, every-
where, today. My suggestion is, in fact, to
write less in total, and to make it ‘reus-
able’; and to raise the quality of what we
do write - by two orders of magnitude. Get
rid of those many major defects per page.

This ‘specification quality improvement’ is
measurable using the methods immedi-
ately below [Chapter 2 of Vision Engineer-
ing].

271/20151/2015

SOFTWARE ENGINEERING

AUTHOR

Tom Gilb

Tom Gilb was born in Pasadena in 1940, emigrated to London
1956, and to Norway 1958, where he joined IBM for 5 years,
and where he resides, and works, when not traveling exten-
sively.

He has mainly worked within the software engineering commu-
nity, but since 1983 with Corporate Top Management problems,
and since 1988 with large-scale systems engineering (Aircraft,
Telecoms and Electronics).

He is an independent teacher, consultant and writer. He has
published nine books, including the early coining of the term
“Software Metrics” (1976) which is the recognized foundation
ideas for IBM CMM/SEI CMM/CMMI Level 4.

He wrote “Principles of Software Engineering Management”
(1988, in 2006 in 20th printing), and “Software Inspection” (1993,
about 14th printing). Both titles are really systems engineer-
ing books in software disguise. His latest book is ‘Competitive
Engineering: A Handbook for Systems Engineering, Require-
ments Engineering, and Software Engineering Management
Using Planguage’, published by Elsevier, Summer 2005.

He is a frequent keynote speaker, invited speaker, panelist, and
tutorial speaker at international conferences.

He consults and teaches in partnership with his son Kai Gilb,
worldwide. He happily contributes teaching and consulting pro
bono to developing countries (India, China, Russia for exam-
ple), to Defense Organizations (UK, USA, Norway, NATO) and
to charities (Norwegian Christian Aid and others).

He enjoys giving time to anyone, especially students, writers,
consultants and teachers, who are interested in his ideas - or
who have some good ideas of their own. He is a member of
INCOSE (www.incose.org).

His methods are widely and officially adopted by many organi-
zations such as IBM, Nokia, Ericsson, HP, Intel, Citigroup - and
many other large and small organizations.

Website: www.gilb.com

28 1/2015

Agile and Scrum
Methodologies from a
Testing/QA Perspective

SOFTWARE ENGINEERING

Abstract

Agile software development is already
beyond the innovation stage and rapidly
moving through an early adoption stage.
Have you noticed agile and Scrum being
mentioned “everywhere” you look? This
write-up will describe key agile/Scrum
concepts, the different phases of an ag-

Marina Gil-Santamaria

ile project managed using Scrum, and the
top three things that you should expect as
a QA engineer/tester professional. If your
organization is looking at agile/Scrum, or
you want to keep up-to-date on industry
trends, read on.

291/20151/2015

AGILE AND SCRUM METHODOLOGIES FROM A TESTING/QA PERSPECTIVE

Introduction

Agile software development is a method-
ology for undertaking software develop-
ment projects in which incremental func-
tionality is released in smaller cycles, and
work is performed in a highly collabora-
tive manner by self-organizing teams that
embrace and adapt changes to ensure
that customer’s needs are truly met. Ag-
ile Software Development is not new, in
fact it was introduced in the 1990s as a
way to reduce costs, minimize risks and
ensure that the final product is truly what
customers requested. The idea behind the
Agile approach is that instead of building
a release that is huge in functionality (and
often late to market), an organization
would adapt to dynamic changing condi-
tions by breaking a release into smaller
shorter cycles of 1 to 6 weeks. Each cycle
is called an iteration, or sprint, and it’s al-
most like a miniature software project of
its own, because it includes all of the tasks
necessary to release the incremental new
functionality. In theory, at the end of each
sprint, the product should be ready for a
GA release. Agile methodology empha-
sizes real-time communication, preferably
face-to-face, versus written documents
and rigid processes. In addition, one of the
most broadly applicable techniques intro-
duced by the agile processes is to express
product requirements in the form of user
stories. Each user story has various fields
including an “actor”, a “goal” or task that
they need to perform, an explanation

Most agile teams include all the people
necessary to release software. At a mini-
mum, this includes programmers and the
group or team they are developing the
application for, often referred to as their
“customers” (customers are the people

who define the product; they may be
product managers, business analysts, or
actual customers). Typically an agile team
will also include a ScrumMaster, testers,
interaction designers, technical writers,
and managers.

What is scrum ? Scrum is really a project
management methodology to facilitate ag-
ile software development, and enable the
creation of self-organizing agile teams. A
ScrumMaster is like a traditional project
manager in the sense that he/she over-
sees the centralization of team communi-
cation, requirements, schedules and prog-
ress. But it is also very different because
his/her main responsibility is to facilitate
team communications and provide guid-
ance and coaching, while removing im-
pediments to the ability of the team to de-
liver its goals. Unlike a traditional project
manager, the ScrumMaster doesn’t direct
the team, because an agile team is based
on the philosophy that a team member is
committed to the other team members,
not to a management authority.

Phases of an Agile Development
Project using Scrum

Agile can be customized to fit each corpo-
ration in terms of size, iteration time, ex-
perience, etc, but typically an agile project
will have these phases and milestones.

1. Kickoff meeting. Although this may
seem routine for any project, with
an agile development project this is
a key element for getting the project
launched. The goal of this meeting is to
get everybody on the team together to
review the product backlog (which is the

30 1/2015

master list of all requirements desired
in the product that the product owner
has drafted in the form of user stories),
as well as the user personas (or the
profile of each type of product user). In
my opinion, this is a nicer and clearer
way to introduce product requirements,
because you really have more visibility
into who is using the product, what are
they trying to achieve and why, right
from the beginning. A kickoff meeting
usually lasts at least half a day with
everybody together going over a “sto-
ry writing workshop” -- in which sto-
ries are selected and then decomposed
into programmable tasks and written in
a white board together along with the
time estimates for completion. If you
have never seen a product backlog, you
can check few samples here in QAZone.
Sometime real customers are invited to
the kickoff meeting as well to review
and clarify the product backlog with the
agile team.

2. The next step in the sprint/iteration
planning, in which the team collec-
tively decides the sprint goal and sprint
backlog (list of prioritized work to be
done for that particular sprint). While
the team is collectively creating the
sprint backlog, stories need to be bro-
ken into either sub-stories or smaller
tasks. During this collective team exer-
cise you can really see the differences
in project management (at least if you
have a more rigid and formal water-
fall like type of background), because
there is no management authority that
assigns tasks to team members. On
an agile team all the members jointly
associate level of difficulty to specific
tasks, they can remove or add addi-
tional stories and/or tasks, and tasks
are distributed among the team on a
per volunteers basis. Unlike a tradi-

tional project manager function, the
ScrumMaster role in this meeting is to
maintain the backlog list in the meeting
based on team feedback and consen-
sus, make sure that nobody is volun-
teering for too many tasks to the point
of overload, and facilitate the process
of building personal commitment to the
team.

3. Now that the Sprint planning is ready in
the form of sprint backlog – which is dy-
namic and not set in stone, in fact it is
very likely that it will adapt and change
based on new stories, new tasks and/
or impediments found throughout the
iteration – scrum meetings will be set
at the same time and in the same place
on a daily basis. If you have never at-
tended a scrum meeting, these meet-
ings are very dynamic in nature and
fast, never more than 30 minutes, and
ideally 10-15 minutes. The objective is
to go around so each team member can
answer 3 questions: what have I ac-
complished since the last meeting (de-
veloped, tested, written, etc), what will
I be working on next, and what are the
problems, if any, preventing me from
accomplishing my goals. These meet-
ings are very important to make sure
that the team moves towards achieving
their sprint goal, or adapts/evolves and
changes priorities and tasks as need-
ed if new stories, impediments or new
scenarios are encountered.

4. At the end of the sprint or iteration,
usually a final acceptance meeting
takes place, which is typically done by
presenting what the team has accom-
plished, and by delivering a demo to
the customer or to a larger audience.

5. At the end of an iteration there is also
a sprint retro meeting, similar to a
postmortem meeting at the end of oth-
er traditional projects, so the team gets

AGILE AND SCRUM METHODOLOGIES FROM A TESTING/QA PERSPECTIVE

311/20151/2015

SOFTWARE ENGINEERING

together to evaluate what worked well,
and what needs to be improved during
their next iteration.

Top 3 things a QA professional
should expect when an organi-
zation adopts Agile/Scrum de-
velopment techniques

Agile and Scrum are really changing the
way testing is perceived throughout the
project. Testing is not a phase at the end;
it really is integrated throughout the en-
tire iteration cycle, and it goes hand in
hand with programming tasks. In my ex-
perience, when comparing a testing role
performed within an agile project, or when
using more rigid and formal approaches, I
have found that with agile methodologies
there is:

1. Better communication and more
collaboration among QA & devel-
opment folks. Gone are the days of
“give me requirements” and “I will
give you bugs and reports back”...QA
folks are involved in the project from
the start–along with their development
counterparts–and they have access to
the same information about product re-
quirements and customer needs at the
same time. This participation from the
onset, combined with the fact that de-
velopment and QA are part now of the
same agile team, that they get togeth-
er on a daily basis, and that they have
full visibility into the tasks that each
other is performing towards the overall
success of the sprint, means better and
more frequent communication among
themselves. In addition, because the
entire team meets everyday (develop-
ment, QA, product management, etc)
there are more opportunities for collab-

oration and more view points towards
performing a particular task. Also the
traditional “rivalry” that you may find
among QA and development is elimi-
nated because there is a single agile
team now working to achieve a com-
mon goal.

2. A new “peer to peer” relationship
between development and QA per-
sonnel. You should be prepared to
“speak up” much more. Agile method-
ologies are all about building self-orga-
nized teams, and the voice of a QA en-
gineer/tester carries the same weight
than a developer. Think about it. In the
daily scrum meeting each team mem-
ber gets asked about their accomplish-
ments (testing, developing, writing
product documentation, etc), future
plans, and obstacles, treating all of the
members as equal partners. On an agile
team the question of “how are we going
to test it”, is as important as “how are
going to build it”. In addition, because
testers tend to be exceptionally good at
clarifying requirements and identifying
alternative scenarios, (especially when
they have full visibility into product re-
quirements and customer needs), they
provide valuable input on design and
architectural decisions throughout the
project, right from the beginning. And
these contributions translate into more
respect and appreciation from their de-
velopment counterparts.

3. Looking for ways to optimize test-
ing efforts will be a “must”. You re-
ally need to think about automation,
and planning and performing your test-
ing efforts very efficiently. With short-
er development cycles of typically no
more than 6 weeks, and with builds be-
ing released all the time, testing efforts
really need to be optimized as much
as possible, because there is not sep-

32 1/2015

AGILE AND SCRUM METHODOLOGIES FROM A TESTING/QA PERSPECTIVE

arate test phase as such. One of the
ways to achieve this is by leveraging
both Exploratory Testing and Automat-
ed Testing throughout the project. Ex-
ploratory testing will come very handy
when looking for bugs, opportunities to
improve, and missing features. So you
should plan on “exploring” the product
at the beginning of each new sprint, or
any time that there is a change done
to a product feature within the sprint
cycle. Similarly, you will need to plan
and build your scripts to perform auto-
mated functional and regression test-
ing within the sprint, because there is
not enough time for performing thor-
ough manual testing. One of the things
to remember is that there are no re-
ally lengthy requirement document or
specifications–other that the stories
encapsulated on the backlog files–so
the only way to make sure that each
feature is fully developed, tested, and
accepted by the product owner before
counting it as “DONE!”, is by using the
sprint backlog as your own test plan (or
writing a test case or script for every
feature). Some teams are treating test
case scenarios as entries that need to
be added to the product/sprint backlog

files for planning and tracking purposes.
Another factor to consider is that devel-
opment is much more heavily engaged
in testing, so you should leverage this,
and work very closely with them to plan
and build more automated scripts that
cover realistic scopes.

Summary

If you enjoy being involved in product
decision making, helping to shape how a
product looks and works, and working in a
collaborative environment that encourages
team work and peer to peer relationships
with your development counterparts, you
will enjoy working on an agile project. On
the down side, agile software development
can be a little bit intimating at the begin-
ning. Agile is all about embracing and rap-
idly adapting to changes–which might be
hard to accept at the beginning–plus there
are new processes, and new communica-
tion styles in place, so you might feel a
little reluctant about it. However, once you
get into the dynamics of agile software de-
velopment, it can be a very fun and em-
powering experience!

AUTHOR

Marina Gil-Santamaria

Marina Gil-Santamaria is the Founder of Blue Arrow Marketing
Inc., where she offers technical marketing, project and launch
management consulting services for the High Tech Industry.
During the last fifteen years Marina has held positions in product
management, project management, development, QA, techni-
cal marketing and services organizations at CA, Wily, Empirix,
Oracle, Gomez, Compuware and Ipswitch. Marina holds an MS
in electrical engineering from the Universidad Politecnica de
Madrid, Spain.

Article was originally published on:
http://www.stickyminds.com/article/agile-and-scrum-methodologies-testingqa-perspective

331/20151/2015

Publisher
VWT Polska Michał Kruszewski
Przy Lasku 8 lok. 52, 01-424 Warszawa
Number NIP 5272137158
Number REGON 142455963

Chief editor
Karolina Zmitrowicz
karolina.zmitrowicz@quale.pl

Deputy chief editor
Krzysztof Chytla
krzysztof.chytla@quale.pl

Editors
Bartłomiej Prędki
bartlomiej.predki@quale.pl
Michał Figarski
michal.figarski@quale.pl

WWW
www.qualemagazine.com
www.quale.pl

Facebook
http://www.facebook.com/qualemagazine

Advertisement
info@quale.pl

Cooperation
If you are interested in cooperating with us,
please send us a message:
info@quale.pl

Magazine All trade marks published are property of the
proper companies.

Copyright:
All papers published are part of the copyright
of the respective author or enterprise. It is
prohibited to rerelease, copy or modify the
contents of this paper without their written
agreement.

The following graphics have been used:

Content
http://pixabay.com/

Free for commercial use / No attribution re-
quired

Cover

Northern Lights, Sweden, Lapland, Aurora Borealis
http://pixabay.com/
Free for commercial use / No attribution re-
quired

MAGAZINE

